Advanced Two Level Hierarchical Models

This is a sample hierarchical linear model research. This model begins with the necessary nitty-gritty of data analyses in R and culminates in an advanced 2-level mixed linear model (MLM) which contains fixed slopes, random slopes and even moderators. It took quite a while for me to figure out ways to conduct these analyses, especially the MLMs. Thus, this report is for my own resource. Thus, it doesn’t have much description. I have some explanation especially of the one’s I think I may forget. If you happen to visit this page, you are on luck!!

Highlights

  • Null Model Using lmer() function
  • Random Intercept, Fixed Slope Models
  • Random Intercept, Random Slope Models
  • Best Fitting Model
  • Model Comparison
  • Plotting Models (Random effects and Fixed effects)
  • APA Tables
  • Calculating R-Squared, Omega-Squared values etc.

Select Working Directory

setwd("C:/Users/nirma/Desktop/FJER Copies")

Loading Required Libraries

When you become an advance R user, you refrain loading all the libraries. We only load the libraries that we use all the times like {tidyverse} or {ggplot}, and we call other libraries on the go as we need using {library_name::function()}. R stores all of these objects in RAM (Random Access Memory), thus, loading all the libraries may seriously compromise the speed of our machine.

library(tidyverse)
library(ggplot2)
library(sjlabelled)
library(sjPlot)
library(stringr)
library(r2mlm)
library(lme4)
library(readr)
library(here)
library(papaja)
library(geomtextpath)
library(janitor)
library(lmerTest)
library(sjstats)
# library(QuantPsyc)

Uploading My Data

final_data <- read_csv("EDF7006_final_Study_TWS_Data_Spring_2018_1.csv")

# Checking the dimension of the data set
dim(final_data)
[1] 5561   25
# Checking the summary of the data
summary(final_data)
      T_ID        STUDENT        TPROGRAM         Majors          TGRADE     
 Min.   :  1   Min.   :   1   Min.   :0.000   Min.   :0.000   Min.   : 0.00  
 1st Qu.: 68   1st Qu.:1391   1st Qu.:0.000   1st Qu.:0.000   1st Qu.: 2.00  
 Median :132   Median :2781   Median :0.000   Median :0.000   Median : 4.00  
 Mean   :132   Mean   :2781   Mean   :0.308   Mean   :0.028   Mean   : 4.29  
 3rd Qu.:199   3rd Qu.:4171   3rd Qu.:0.000   3rd Qu.:0.000   3rd Qu.: 5.00  
 Max.   :236   Max.   :5561   Max.   :2.000   Max.   :1.000   Max.   :12.00  
                                                                             
    SGrd_Lvl          MALE         ETHNICITY       FRLUNCH           EL       
 Min.   :0.000   Min.   :0.000   Min.   :0.00   Min.   :0.00   Min.   :0.000  
 1st Qu.:0.000   1st Qu.:0.000   1st Qu.:0.00   1st Qu.:0.00   1st Qu.:0.000  
 Median :0.000   Median :0.000   Median :1.00   Median :1.00   Median :0.000  
 Mean   :0.307   Mean   :0.489   Mean   :1.11   Mean   :0.51   Mean   :0.105  
 3rd Qu.:0.000   3rd Qu.:1.000   3rd Qu.:1.00   3rd Qu.:1.00   3rd Qu.:0.000  
 Max.   :2.000   Max.   :1.000   Max.   :5.00   Max.   :1.00   Max.   :1.000  
                 NA's   :1       NA's   :1                     NA's   :1      
     PRELG1        PRELG2          PRELG3         POSTLG1         POSTLG2     
 Min.   :  0   Min.   :  0.0   Min.   :  0.0   Min.   :  0.0   Min.   :  0.0  
 1st Qu.:  1   1st Qu.:  1.0   1st Qu.:  1.0   1st Qu.:  3.0   1st Qu.:  3.0  
 Median :  3   Median :  2.0   Median :  2.0   Median :  5.0   Median :  4.0  
 Mean   :  7   Mean   :  5.1   Mean   :  5.1   Mean   : 11.7   Mean   :  9.4  
 3rd Qu.:  6   3rd Qu.:  5.0   3rd Qu.:  5.0   3rd Qu.: 10.0   3rd Qu.: 10.0  
 Max.   :100   Max.   :100.0   Max.   :100.0   Max.   :100.0   Max.   :100.0  
 NA's   :58    NA's   :124     NA's   :121     NA's   :55      NA's   :109    
    POSTLG3        PREPERCENT     POSTPERCENT         PPG       
 Min.   :  0.0   Min.   :  0.0   Min.   :  0.0   Min.   :-45.8  
 1st Qu.:  2.0   1st Qu.: 26.7   1st Qu.: 73.8   1st Qu.: 20.0  
 Median :  5.0   Median : 43.8   Median : 86.7   Median : 36.8  
 Mean   :  9.6   Mean   : 45.2   Mean   : 82.5   Mean   : 37.3  
 3rd Qu.:  9.0   3rd Qu.: 62.5   3rd Qu.: 95.8   3rd Qu.: 53.4  
 Max.   :100.0   Max.   :100.0   Max.   :100.0   Max.   :100.0  
 NA's   :96      NA's   :90      NA's   :90      NA's   :90     
     White         Elementary          Math         Taught_ELEM    
 Min.   :0.000   Min.   :-1.000   Min.   :-1.000   Min.   :-1.000  
 1st Qu.:0.000   1st Qu.: 1.000   1st Qu.: 0.000   1st Qu.: 0.000  
 Median :0.000   Median : 1.000   Median : 0.000   Median : 0.000  
 Mean   :0.463   Mean   : 0.692   Mean   :-0.113   Mean   :-0.062  
 3rd Qu.:1.000   3rd Qu.: 1.000   3rd Qu.: 0.000   3rd Qu.: 0.000  
 Max.   :1.000   Max.   : 1.000   Max.   : 1.000   Max.   : 1.000  
                                                                   
 Taught_Middle      filter_$    
 Min.   :-1.00   Min.   :0.000  
 1st Qu.: 0.00   1st Qu.:0.000  
 Median : 0.00   Median :0.000  
 Mean   :-0.04   Mean   :0.406  
 3rd Qu.: 0.00   3rd Qu.:1.000  
 Max.   : 1.00   Max.   :1.000  
                                

Checking the Column Names

names(final_data)
 [1] "T_ID"          "STUDENT"       "TPROGRAM"      "Majors"       
 [5] "TGRADE"        "SGrd_Lvl"      "MALE"          "ETHNICITY"    
 [9] "FRLUNCH"       "EL"            "PRELG1"        "PRELG2"       
[13] "PRELG3"        "POSTLG1"       "POSTLG2"       "POSTLG3"      
[17] "PREPERCENT"    "POSTPERCENT"   "PPG"           "White"        
[21] "Elementary"    "Math"          "Taught_ELEM"   "Taught_Middle"
[25] "filter_$"     

Subsetting the data by selecting the required columns

# Selecting only the Required Columns
final_data <- final_data |>
  select(
    T_ID, STUDENT, TPROGRAM,
    SGrd_Lvl, MALE, ETHNICITY, FRLUNCH,
    EL, PREPERCENT, POSTPERCENT, White,
    Elementary, Math, Taught_ELEM, Taught_Middle
  )

# Renaming the desired Column
final_data <- final_data |>
  rename(TGRADE = SGrd_Lvl)

# Checking the Structure of the Entire Dataset
str(final_data)
tibble [5,561 x 15] (S3: tbl_df/tbl/data.frame)
 $ T_ID         : num [1:5561] 1 1 1 1 1 1 1 1 1 1 ...
 $ STUDENT      : num [1:5561] 1 2 3 4 5 6 7 8 9 10 ...
 $ TPROGRAM     : num [1:5561] 0 0 0 0 0 0 0 0 0 0 ...
 $ TGRADE       : num [1:5561] 0 0 0 0 0 0 0 0 0 0 ...
 $ MALE         : num [1:5561] 0 1 0 1 1 1 0 0 1 0 ...
 $ ETHNICITY    : num [1:5561] 1 0 0 3 3 0 1 1 0 1 ...
 $ FRLUNCH      : num [1:5561] 1 1 0 1 1 1 1 1 1 1 ...
 $ EL           : num [1:5561] 1 0 1 0 1 0 1 1 0 1 ...
 $ PREPERCENT   : num [1:5561] 50 80 70 60 70 NA 50 40 70 60 ...
 $ POSTPERCENT  : num [1:5561] 90 80 70 80 80 NA 70 60 70 60 ...
 $ White        : num [1:5561] 0 1 1 0 0 1 0 0 1 0 ...
 $ Elementary   : num [1:5561] 1 1 1 1 1 1 1 1 1 1 ...
 $ Math         : num [1:5561] 0 0 0 0 0 0 0 0 0 0 ...
 $ Taught_ELEM  : num [1:5561] 0 0 0 0 0 0 0 0 0 0 ...
 $ Taught_Middle: num [1:5561] 0 0 0 0 0 0 0 0 0 0 ...

Cleaning the Column Names for Consistency

# Using clean columns names for consistency
final_data <- final_data |>
  clean_names()

# Checking the column names
names(final_data)
 [1] "t_id"          "student"       "tprogram"      "tgrade"       
 [5] "male"          "ethnicity"     "frlunch"       "el"           
 [9] "prepercent"    "postpercent"   "white"         "elementary"   
[13] "math"          "taught_elem"   "taught_middle"
# Calculating Pretest and Posttest Means
pretest_mean <- mean(final_data$prepercent, na.rm = TRUE)
posttest_mean <- mean(final_data$postpercent, na.rm = TRUE)

# Displaying the means together as a data frame
data.frame(pretest_mean, posttest_mean)
  pretest_mean posttest_mean
1         45.2          82.5

Changing the labels and class of the columns

Sometimes, we have to change the dummy codes to the actual categories for better understanding and interpretation of the output. The codes below display the action where I am changing lavels into the desired labels. They were dummy coded on the SPSS files. The names did not get carried over to R but just the codes.

# Setting dummy codes to real names and changing the columns to factor
final_data$el <- factor(final_data$el, levels = c(0, 1), labels = c("non_ELs", "ELs"))
final_data$male <- factor(final_data$male, levels = c(0, 1), labels = c("Female", "Male"))
final_data$tgrade <- factor(final_data$tgrade, levels = c(0, 1, 2), labels = c("Elementary Grades", "Middle School", "High School"))
final_data$ethnicity <- factor(final_data$ethnicity, levels = c(0, 1, 2, 3, 4, 5), labels = c("White", "Black", "Hispanics", "Asian & Pacific Islanders", "Alaskan Natives or American Indians", "Other or Multiracial"))
final_data$frlunch <- factor(final_data$frlunch, levels = c(0, 1), labels = c("high_SES", "low_SES"))
final_data$tprogram <- factor(final_data$tprogram, levels = c(0, 1, 2), labels = c("Elementary Education", "Math Education", "English Language Arts"))
final_data$white <- factor(final_data$white, levels = c(0, 1), labels = c("Minority", "non_Minority"))

Creating Long Data (Person Period Data) out of Wide Data (Person Level Data)

There are many instances when we need our data to be in a long format (person period data - one row for each measurement/time having multiple rows per person based on the number or times they were measured) rather than in a wide one (person level data - one row of data per participant, and one column per variable), for example, while conducting ANOVA, or other advanced regression. We can change the wide data to long data using the pivot_longer() function in base R. However, its scope is limited for me to use here. I want to be able to transfer some columns as they are, while stacking some of the columns for combined measurement. Use of `data.frame() & stack() function would allow me to do so.

# Changing the wide data into the long data needed in some analyses
long_data <- data.frame(t_id = final_data$t_id, student = final_data$student, el = final_data$el, white = final_data$white, frlunch = final_data$frlunch, stack(final_data, select = prepercent:postpercent)) |>
  mutate(
    test_scores = as.numeric(values),
    test_types = as.factor(ind)
  ) |>
  select(t_id, student, el, white, frlunch, test_scores, test_types)

# changing the labels of the newly minted variable neamed test_types
long_data$test_types <- factor(long_data$test_types, labels = c("prepercent", "postpercent"))

# Checking if that worked
head(long_data)
  t_id student      el        white  frlunch test_scores test_types
1    1       1     ELs     Minority  low_SES          50 prepercent
2    1       2 non_ELs non_Minority  low_SES          80 prepercent
3    1       3     ELs non_Minority high_SES          70 prepercent
4    1       4 non_ELs     Minority  low_SES          60 prepercent
5    1       5     ELs     Minority  low_SES          70 prepercent
6    1       6 non_ELs non_Minority  low_SES          NA prepercent

Running some Exploratory Data Analyses using Visualization Techniques

Visualizing the distribution of pretest and posttest scores

pre_post_density <- long_data |>
  na.omit() |>
  ggplot(aes(test_scores, fill = test_types, label = test_types), alpha = 0.3) +
  geom_textdensity(size = 4, fontface = 4, hjust = 0.2, vjust = 0.3) +
  geom_textvline(xintercept = pretest_mean, label = "pretest mean score = 45.2", hjust = 0.8, vjust = 1.3) +
  geom_textvline(xintercept = posttest_mean, label = "posttest mean score = 82.5", hjust = 0.8, vjust = 1.3) +
  xlab("Test Scores") +
  theme(legend.position = "none")

# APA Plot
pre_post_density + theme_apa()

Comparing the Pretest and Posttest Scores as Function of EL Status

# Creating EL pretest and posttest score plot
b_bar <- long_data |>
  na.omit() |>
  group_by(el, test_types) |>
  summarize(
    mean_value = mean(test_scores, na.rm = TRUE),
    sd_value = sd(test_scores, na.rm = TRUE)
  ) |>
  ggplot(aes(x = factor(test_types), mean_value, fill = test_types)) +
  geom_bar(stat = "identity", position = position_dodge()) +
  geom_errorbar(aes(ymin = mean_value - sd_value, ymax = mean_value + sd_value), width = .2, position = position_dodge(0.9)) +
  scale_fill_manual(values = c("darkgrey", "lightgray")) +
  labs(y = "Test Scores", x = "") +
  facet_wrap(~el)

# printing the plot in apa theme
b_bar + theme_apa()

Checking out various necessary statistics

# Calculating total students by teacher program
distinct_t_subject <- final_data |>
  select(t_id, tprogram) |>
  group_by(t_id, tprogram) |>
  count() |>
  print()
# A tibble: 236 x 3
# Groups:   t_id, tprogram [236]
    t_id tprogram                 n
   <dbl> <fct>                <int>
 1     1 Elementary Education    21
 2     2 Elementary Education    18
 3     3 Elementary Education    18
 4     4 Elementary Education    22
 5     5 Elementary Education    14
 6     6 Elementary Education    16
 7     7 Elementary Education    19
 8     8 Elementary Education    15
 9     9 Elementary Education     4
10    10 Elementary Education    17
# ... with 226 more rows
# Calculating total teachers by teacher program
teacher_count_program <- distinct_t_subject |>
  select(tprogram) |>
  group_by(tprogram) |>
  count() |>
  mutate(pct = n / 236) |>
  print()
# A tibble: 3 x 3
# Groups:   tprogram [3]
  tprogram                  n    pct
  <fct>                 <int>  <dbl>
1 Elementary Education    220 0.932 
2 Math Education            5 0.0212
3 English Language Arts    11 0.0466
# Calculating total students by teacher grades
distinct_grade <- final_data |>
  select(tgrade, t_id) |>
  group_by(t_id, tgrade) |>
  count() |>
  print()
# A tibble: 236 x 3
# Groups:   t_id, tgrade [236]
    t_id tgrade                n
   <dbl> <fct>             <int>
 1     1 Elementary Grades    21
 2     2 Elementary Grades    18
 3     3 Elementary Grades    18
 4     4 Elementary Grades    22
 5     5 Elementary Grades    14
 6     6 Elementary Grades    16
 7     7 Elementary Grades    19
 8     8 Elementary Grades    15
 9     9 Elementary Grades     4
10    10 Elementary Grades    17
# ... with 226 more rows
# Calculating total teacher by the grades they taught
teacher_count_grade <- distinct_grade |>
  select(tgrade) |>
  group_by(tgrade) |>
  count() |>
  mutate(pct = n / 236) |>
  print()
# A tibble: 3 x 3
# Groups:   tgrade [3]
  tgrade                n    pct
  <fct>             <int>  <dbl>
1 Elementary Grades   218 0.924 
2 Middle School         7 0.0297
3 High School          11 0.0466

Regressions

Getting Rid of Missing Values for easy calculations

final_data <- na.omit(final_data)

A. Pretest Null Model

# Null Model
pretest_null_model <- lmer(prepercent ~ 1 + (1 | t_id), data = final_data)
# Printing Summary Table
# summary(pretest_null_model)
# R-squared
r2mlm(pretest_null_model)

$Decompositions
                total             within between
fixed, within   0                 0      NA     
fixed, between  0                 NA     0      
slope variation 0                 0      NA     
mean variation  0.480392530283301 NA     1      
sigma2          0.519607469716699 1      NA     

$R2s
    total             within between
f1  0                 0      NA     
f2  0                 NA     0      
v   0                 0      NA     
m   0.480392530283301 NA     1      
f   0                 NA     NA     
fv  0                 0      NA     
fvm 0.480392530283301 NA     NA     
# sjPlot::tab_model(pretest_null_model)

B. Posttest Null Model

# Null Model
posttest_null_model <- lmer(postpercent ~ 1 + (1 | t_id), data = final_data)
# Printing Summary Table
summary(posttest_null_model)
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: postpercent ~ 1 + (1 | t_id)
   Data: final_data

REML criterion at convergence: 45393

Scaled residuals: 
   Min     1Q Median     3Q    Max 
-5.975 -0.490  0.201  0.655  2.810 

Random effects:
 Groups   Name        Variance Std.Dev.
 t_id     (Intercept)  85.6     9.25   
 Residual             214.1    14.63   
Number of obs: 5469, groups:  t_id, 236

Fixed effects:
            Estimate Std. Error     df t value Pr(>|t|)    
(Intercept)    82.36       0.64 232.38     129   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# R-squared
r2mlm(posttest_null_model)

$Decompositions
                total             within between
fixed, within   0                 0      NA     
fixed, between  0                 NA     0      
slope variation 0                 0      NA     
mean variation  0.285498104191483 NA     1      
sigma2          0.714501895808518 1      NA     

$R2s
    total             within between
f1  0                 0      NA     
f2  0                 NA     0      
v   0                 0      NA     
m   0.285498104191483 NA     1      
f   0                 NA     NA     
fv  0                 0      NA     
fvm 0.285498104191483 NA     NA     
# sjPlot::tab_model(posttest_null_model)

C. EL Pretest Fixed Slope Model

el_pretest_model <- lmer(prepercent ~ el + (1 | t_id), data = final_data)
# summary(el_pretest_model)
# r2mlm(el_pretest_model)
# sjPlot::tab_model(el_pretest_model)
effectsize::standardize_parameters(el_pretest_model, method = "pseudo")
# Standardization method: pseudo

Parameter   | Coefficient (std.) |         95% CI
-------------------------------------------------
(Intercept) |               0.00 | [ 0.00,  0.00]
elELs       |              -0.15 | [-0.18, -0.12]

D. EL Pretest Random Slope Model

el_pretest_random <- lmer(prepercent ~ el + (el | t_id), data = final_data)
# sjPlot::tab_model(el_pretest_random)
effectsize::standardize_parameters(el_pretest_random, method = "pseudo")
# Standardization method: pseudo

Parameter   | Coefficient (std.) |         95% CI
-------------------------------------------------
(Intercept) |               0.00 | [ 0.00,  0.00]
elELs       |              -0.16 | [-0.19, -0.13]

E. Putting them Together

sjPlot::tab_model(pretest_null_model, el_pretest_model, el_pretest_random)
  prepercent prepercent prepercent
Predictors Estimates CI p Estimates CI p Estimates CI p
(Intercept) 47.18 44.95 – 49.41 <0.001 48.15 45.92 – 50.38 <0.001 48.18 45.92 – 50.45 <0.001
el [ELs] -8.59 -10.23 – -6.94 <0.001 -9.15 -11.05 – -7.26 <0.001
Random Effects
σ2 313.29 307.37 304.48
τ00 289.64 t_id 286.11 t_id 296.15 t_id
τ11     33.78 t_id.elELs
ρ01     -0.46 t_id
ICC 0.48 0.48 0.49
N 236 t_id 236 t_id 236 t_id
Observations 5469 5469 5469
Marginal R2 / Conditional R2 0.000 / 0.480 0.012 / 0.488 0.013 / 0.495

F. EL FRPL Models

el_frpl_model <- lmer(prepercent ~ el + frlunch + (el + frlunch | t_id), data = final_data)
el_frpl_interaction <- lmer(prepercent ~ el + frlunch + el * frlunch + (el + frlunch | t_id), data = final_data)
# sjPlot::tab_model(el_frpl_model, el_frpl_interaction)
plot_model(el_frpl_interaction, type = "pred", terms = c("el", "frlunch"))

G. Level 1 Models

level_1_model <- lmer(prepercent ~ el + frlunch + male + white + (el + frlunch | t_id), data = final_data)
# sjPlot::tab_model(el_frpl_model, el_frpl_interaction, level_1_model)

H. Model Comparison

anova(pretest_null_model, el_frpl_model, level_1_model)
Data: final_data
Models:
pretest_null_model: prepercent ~ 1 + (1 | t_id)
el_frpl_model: prepercent ~ el + frlunch + (el + frlunch | t_id)
level_1_model: prepercent ~ el + frlunch + male + white + (el + frlunch | t_id)
                   npar   AIC   BIC logLik deviance Chisq Df Pr(>Chisq)    
pretest_null_model    3 47664 47683 -23829    47658                        
el_frpl_model        10 47461 47527 -23721    47441 216.3  7    < 2e-16 ***
level_1_model        12 47442 47521 -23709    47418  23.2  2    9.1e-06 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

I. Level 1 Level 2 Models

level1_level2_model <- lmer(prepercent ~ el + frlunch + male + ethnicity + (el + frlunch | t_id) + (1 + male | tprogram) + (1 + male | tgrade), data = final_data, control = lmerControl(optimizer = "nloptwrap", optCtrl = list(maxfun = 2e5)))
# Putting Results together
sjPlot::tab_model(pretest_null_model, level_1_model, level1_level2_model)
  prepercent prepercent prepercent
Predictors Estimates CI p Estimates CI p Estimates CI p
(Intercept) 47.18 44.95 – 49.41 <0.001 49.02 46.48 – 51.56 <0.001 45.58 35.79 – 55.38 <0.001
el [ELs] -7.50 -9.37 – -5.62 <0.001 -7.90 -9.83 – -5.96 <0.001
frlunch [low SES] -5.38 -6.88 – -3.88 <0.001 -4.80 -6.29 – -3.31 <0.001
male [Male] 1.51 0.58 – 2.44 0.001 0.84 -5.71 – 7.39 0.802
white [non Minority] 1.95 0.89 – 3.00 <0.001
ethnicity [Black] -2.29 -3.56 – -1.02 <0.001
ethnicity [Hispanics] 13.73 4.90 – 22.56 0.002
ethnicity [Asian &
Pacific Islanders]
-4.35 -5.86 – -2.84 <0.001
ethnicity [Alaskan
Natives or American
Indians]
3.15 0.89 – 5.42 0.006
ethnicity [Other or
Multiracial]
-0.18 -2.84 – 2.48 0.893
Random Effects
σ2 313.29 294.13 291.28
τ00 289.64 t_id 307.66 t_id 292.54 t_id
    0.00 tprogram
    55.59 tgrade
τ11   26.88 t_id.elELs 28.68 t_id.elELs
  34.22 t_id.frlunchlow_SES 31.92 t_id.frlunchlow_SES
    21.93 tprogram.maleMale
    8.58 tgrade.maleMale
ρ01   -0.53 -0.54 t_id.elELs
  -0.30 -0.26 t_id.frlunchlow_SES
     
    0.10 tgrade
ICC 0.48 0.50  
N 236 t_id 236 t_id 236 t_id
    3 tprogram
    3 tgrade
Observations 5469 5469 5469
Marginal R2 / Conditional R2 0.000 / 0.480 0.032 / 0.511 0.069 / NA

J. Final

# plot(final_data)
# Checking the fixed and random effects of all predictors(Results not populated because of space issue)
# head(coef(level1_level2_model))

# Plotting the Random effects of the mentioned model (only Random effects)
plot(ranef(level1_level2_model))
$t_id


$tprogram


$tgrade

# Plotting the whole model(fitted vs. residuals)
plot(level1_level2_model)

K. R-Squared

# Calculating R-Squared for the Mentioned Models
r2(pretest_null_model)
# R2 for Mixed Models

  Conditional R2: 0.480
     Marginal R2: 0.000
r2(level_1_model)
# R2 for Mixed Models

  Conditional R2: 0.511
     Marginal R2: 0.032
r2(level1_level2_model)
Random effect variances not available. Returned R2 does not account for random effects.
# R2 for Mixed Models

  Conditional R2: NA
     Marginal R2: 0.069

L. Level 1 Models

level_1_model_int <- lmer(prepercent ~ el + frlunch + male + white + el * frlunch + el * male + el * white + frlunch * male + frlunch * white + male * white + (el + frlunch | t_id), data = final_data)
summary(level_1_model_int)
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: prepercent ~ el + frlunch + male + white + el * frlunch + el *  
    male + el * white + frlunch * male + frlunch * white + male *  
    white + (el + frlunch | t_id)
   Data: final_data

REML criterion at convergence: 47389

Scaled residuals: 
   Min     1Q Median     3Q    Max 
-4.243 -0.602  0.009  0.610  4.613 

Random effects:
 Groups   Name           Variance Std.Dev. Corr       
 t_id     (Intercept)    307.7    17.54               
          elELs           27.9     5.28    -0.52      
          frlunchlow_SES  34.0     5.83    -0.30  0.50
 Residual                294.0    17.15               
Number of obs: 5469, groups:  t_id, 236

Fixed effects:
                                  Estimate Std. Error        df t value
(Intercept)                        49.2810     1.4090  374.3784   34.98
elELs                              -8.1092     1.8916  436.5526   -4.29
frlunchlow_SES                     -6.2253     1.0909  502.9885   -5.71
maleMale                            0.7262     0.9374 5156.7984    0.77
whitenon_Minority                   2.5124     0.9090 5156.5537    2.76
elELs:frlunchlow_SES                0.8634     1.9826  531.6911    0.44
elELs:maleMale                     -0.0809     1.6659 3640.8564   -0.05
elELs:whitenon_Minority             0.6052     3.1068 2191.4970    0.19
frlunchlow_SES:maleMale             2.2185     0.9991 5161.7614    2.22
frlunchlow_SES:whitenon_Minority   -0.6039     1.0727 4929.4219   -0.56
maleMale:whitenon_Minority         -0.6818     1.0273 5165.9737   -0.66
                                 Pr(>|t|)    
(Intercept)                       < 2e-16 ***
elELs                             2.2e-05 ***
frlunchlow_SES                    2.0e-08 ***
maleMale                           0.4386    
whitenon_Minority                  0.0057 ** 
elELs:frlunchlow_SES               0.6634    
elELs:maleMale                     0.9613    
elELs:whitenon_Minority            0.8456    
frlunchlow_SES:maleMale            0.0264 *  
frlunchlow_SES:whitenon_Minority   0.5735    
maleMale:whitenon_Minority         0.5069    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) elELs  fr_SES maleMl whtn_M eEL:_S elEL:M eEL:_M f_SES:M
elELs       -0.263                                                         
frlnchl_SES -0.501  0.205                                                  
maleMale    -0.340  0.127  0.311                                           
whtnn_Mnrty -0.422  0.248  0.438  0.394                                    
elELs:f_SES  0.146 -0.753 -0.294 -0.027 -0.173                             
elELs:malMl  0.084 -0.385  0.042 -0.241 -0.133 -0.014                      
elELs:wht_M  0.028 -0.166  0.030 -0.040 -0.089  0.002  0.085               
frlnc_SES:M  0.216  0.016 -0.451 -0.646 -0.145  0.039 -0.105  0.001        
frln_SES:_M  0.253 -0.140 -0.525 -0.011 -0.567  0.221 -0.004 -0.086 -0.003 
mlMl:whtn_M  0.234 -0.111 -0.128 -0.687 -0.564  0.009  0.238  0.069  0.245 
            f_SES:_
elELs              
frlnchl_SES        
maleMale           
whtnn_Mnrty        
elELs:f_SES        
elELs:malMl        
elELs:wht_M        
frlnc_SES:M        
frln_SES:_M        
mlMl:whtn_M  0.005 
r2(level_1_model_int)
# R2 for Mixed Models

  Conditional R2: 0.512
     Marginal R2: 0.032
# Plotting all the interactions in the mentioned models
theme_set(theme_sjplot())
plot_model(level_1_model_int, type = "int")
[[1]]


[[2]]


[[3]]


[[4]]


[[5]]


[[6]]

M. Posttest Model

posttest_model <- lmer(postpercent ~ prepercent + el + frlunch + male + ethnicity + (prepercent + el + frlunch | t_id) + (1 + male | tprogram) + (1 + male | tgrade), data = final_data, control = lmerControl(optimizer = "nloptwrap", optCtrl = list(maxfun = 2e5)))
summary(posttest_model)
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: postpercent ~ prepercent + el + frlunch + male + ethnicity +  
    (prepercent + el + frlunch | t_id) + (1 + male | tprogram) +  
    (1 + male | tgrade)
   Data: final_data
Control: lmerControl(optimizer = "nloptwrap", optCtrl = list(maxfun = 2e+05))

REML criterion at convergence: 44050

Scaled residuals: 
   Min     1Q Median     3Q    Max 
-6.754 -0.464  0.124  0.610  3.948 

Random effects:
 Groups   Name           Variance Std.Dev. Corr             
 t_id     (Intercept)    217.0624 14.733                    
          prepercent       0.0188  0.137   -1.00            
          elELs           30.2508  5.500    0.28 -0.28      
          frlunchlow_SES  11.2576  3.355   -0.16  0.16 -0.30
 tprogram (Intercept)    129.4065 11.376                    
          maleMale        62.6082  7.913   0.14             
 tgrade   (Intercept)    102.7192 10.135                    
          maleMale       100.3981 10.020   -0.09            
 Residual                163.1701 12.774                    
Number of obs: 5469, groups:  t_id, 236; tprogram, 3; tgrade, 3

Fixed effects:
                                              Estimate Std. Error        df
(Intercept)                                    65.3276     8.9612  751.9088
prepercent                                      0.3196     0.0134  145.3309
elELs                                          -5.1100     0.8228  111.0696
frlunchlow_SES                                 -1.4796     0.5117  140.9150
maleMale                                        1.0306     7.4138   36.0167
ethnicityBlack                                 -0.4624     0.4821 5277.5468
ethnicityHispanics                             -2.2567     3.3180 4810.2639
ethnicityAsian & Pacific Islanders             -1.2604     0.5735 5238.3554
ethnicityAlaskan Natives or American Indians   -0.0848     0.8563 4898.7513
ethnicityOther or Multiracial                   0.1756     1.0118 5243.3166
                                             t value Pr(>|t|)    
(Intercept)                                     7.29  7.9e-13 ***
prepercent                                     23.90  < 2e-16 ***
elELs                                          -6.21  9.4e-09 ***
frlunchlow_SES                                 -2.89   0.0044 ** 
maleMale                                        0.14   0.8902    
ethnicityBlack                                 -0.96   0.3375    
ethnicityHispanics                             -0.68   0.4964    
ethnicityAsian & Pacific Islanders             -2.20   0.0280 *  
ethnicityAlaskan Natives or American Indians   -0.10   0.9211    
ethnicityOther or Multiracial                   0.17   0.8622    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) prprcn elELs  fr_SES maleMl ethncB ethncH etA&PI eANoAI
prepercent  -0.116                                                        
elELs        0.007 -0.014                                                 
frlnchl_SES -0.032  0.129 -0.108                                          
maleMale     0.015  0.000  0.003  0.000                                   
ethnctyBlck -0.016  0.034 -0.241 -0.148 -0.001                            
ethnctyHspn -0.002 -0.025  0.000 -0.010  0.000  0.052                     
ethnctyA&PI -0.015  0.056  0.020 -0.160  0.000  0.336  0.037              
ethnctANoAI -0.009 -0.026 -0.087  0.022 -0.003  0.204  0.026  0.135       
ethnctyOtoM -0.007  0.004 -0.035 -0.043  0.001  0.168  0.018  0.141  0.076
optimizer (nloptwrap) convergence code: 0 (OK)
boundary (singular) fit: see help('isSingular')
sjPlot::tab_model(posttest_model)
  postpercent
Predictors Estimates CI p
(Intercept) 65.33 47.76 – 82.90 <0.001
prepercent 0.32 0.29 – 0.35 <0.001
el [ELs] -5.11 -6.72 – -3.50 <0.001
frlunch [low SES] -1.48 -2.48 – -0.48 0.004
male [Male] 1.03 -13.50 – 15.56 0.889
ethnicity [Black] -0.46 -1.41 – 0.48 0.338
ethnicity [Hispanics] -2.26 -8.76 – 4.25 0.496
ethnicity [Asian &
Pacific Islanders]
-1.26 -2.38 – -0.14 0.028
ethnicity [Alaskan
Natives or American
Indians]
-0.08 -1.76 – 1.59 0.921
ethnicity [Other or
Multiracial]
0.18 -1.81 – 2.16 0.862
Random Effects
σ2 163.17
τ00 t_id 217.06
τ00 tprogram 129.41
τ00 tgrade 102.72
τ11 t_id.prepercent 0.02
τ11 t_id.elELs 30.25
τ11 t_id.frlunchlow_SES 11.26
τ11 tprogram.maleMale 62.61
τ11 tgrade.maleMale 100.40
ρ01 t_id.prepercent -1.00
ρ01 t_id.elELs 0.28
ρ01 t_id.frlunchlow_SES -0.16
ρ01 tprogram 0.14
ρ01 tgrade -0.09
N t_id 236
N tprogram 3
N tgrade 3
Observations 5469
Marginal R2 / Conditional R2 0.300 / NA
r2(posttest_model)
Random effect variances not available. Returned R2 does not account for random effects.
# R2 for Mixed Models

  Conditional R2: NA
     Marginal R2: 0.300
plot_model(posttest_model, type = "pred", colors = "bw")
$prepercent


$el


$frlunch


$male


$ethnicity

effectsize::omega_squared(posttest_model, ci.lvl = .95)
# Effect Size for ANOVA (Type III)

Parameter  | Omega2 (partial) |       95% CI
--------------------------------------------
prepercent |             0.79 | [0.75, 1.00]
el         |             0.25 | [0.14, 1.00]
frlunch    |             0.05 | [0.01, 1.00]
male       |            -0.03 | [0.00, 1.00]
ethnicity  |         1.11e-04 | [0.00, 1.00]

- One-sided CIs: upper bound fixed at (1).

N. Posttest Final

posttest_model_final <- lmer(postpercent ~ prepercent + el + frlunch + male + white + (prepercent + el + frlunch | t_id) + (1 + male | tprogram) + (1 + male | tgrade), data = final_data, control = lmerControl(optimizer = "nloptwrap", optCtrl = list(maxfun = 2e5)))
summary(posttest_model_final)
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: 
postpercent ~ prepercent + el + frlunch + male + white + (prepercent +  
    el + frlunch | t_id) + (1 + male | tprogram) + (1 + male |      tgrade)
   Data: final_data
Control: lmerControl(optimizer = "nloptwrap", optCtrl = list(maxfun = 2e+05))

REML criterion at convergence: 44052

Scaled residuals: 
   Min     1Q Median     3Q    Max 
-6.691 -0.462  0.125  0.609  3.881 

Random effects:
 Groups   Name           Variance Std.Dev. Corr             
 t_id     (Intercept)    191.6689 13.844                    
          prepercent       0.0163  0.128   -1.00            
          elELs           31.8890  5.647    0.33 -0.33      
          frlunchlow_SES  11.0141  3.319   -0.08  0.08 -0.35
 tprogram (Intercept)     56.1465  7.493                    
          maleMale         2.9007  1.703   0.16             
 tgrade   (Intercept)     40.3482  6.352                    
          maleMale        16.1061  4.013   -0.03            
 Residual                163.6160 12.791                    
Number of obs: 5469, groups:  t_id, 236; tprogram, 3; tgrade, 3

Fixed effects:
                   Estimate Std. Error        df t value Pr(>|t|)    
(Intercept)         64.6258     5.9049    4.2874   10.94  0.00027 ***
prepercent           0.3201     0.0129  139.8924   24.82  < 2e-16 ***
elELs               -4.9208     0.8106  102.6222   -6.07  2.2e-08 ***
frlunchlow_SES      -1.5760     0.5062  139.1503   -3.11  0.00224 ** 
maleMale             1.2611     2.6113    0.0543    0.48  0.92401    
whitenon_Minority    0.6154     0.3985 5243.9647    1.54  0.12256    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) prprcn elELs  fr_SES maleMl
prepercent  -0.164                            
elELs        0.005 -0.034                     
frlnchl_SES -0.051  0.111 -0.119              
maleMale     0.012 -0.001  0.007  0.001       
whtnn_Mnrty -0.037 -0.038  0.166  0.161  0.003
optimizer (nloptwrap) convergence code: 0 (OK)
boundary (singular) fit: see help('isSingular')
sjPlot::tab_model(posttest_model_final)
  postpercent
Predictors Estimates CI p
(Intercept) 64.63 53.05 – 76.20 <0.001
prepercent 0.32 0.29 – 0.35 <0.001
el [ELs] -4.92 -6.51 – -3.33 <0.001
frlunch [low SES] -1.58 -2.57 – -0.58 0.002
male [Male] 1.26 -3.86 – 6.38 0.629
white [non Minority] 0.62 -0.17 – 1.40 0.123
Random Effects
σ2 163.62
τ00 t_id 191.67
τ00 tprogram 56.15
τ00 tgrade 40.35
τ11 t_id.prepercent 0.02
τ11 t_id.elELs 31.89
τ11 t_id.frlunchlow_SES 11.01
τ11 tprogram.maleMale 2.90
τ11 tgrade.maleMale 16.11
ρ01 t_id.prepercent -1.00
ρ01 t_id.elELs 0.33
ρ01 t_id.frlunchlow_SES -0.08
ρ01 tprogram 0.16
ρ01 tgrade -0.03
N t_id 236
N tprogram 3
N tgrade 3
Observations 5469
Marginal R2 / Conditional R2 0.300 / NA
r2(posttest_model_final)
Random effect variances not available. Returned R2 does not account for random effects.
# R2 for Mixed Models

  Conditional R2: NA
     Marginal R2: 0.300
plot_model(posttest_model_final, type = "pred", colors = "bw")
$prepercent


$el


$frlunch


$male


$white

effectsize::omega_squared(posttest_model_final, ci.lvl = .95)
# Effect Size for ANOVA (Type III)

Parameter  | Omega2 (partial) |       95% CI
--------------------------------------------
prepercent |             0.81 | [0.77, 1.00]
el         |             0.26 | [0.14, 1.00]
frlunch    |             0.06 | [0.01, 1.00]
male       |            -0.60 | [0.00, 1.00]
white      |         2.64e-04 | [0.00, 1.00]

- One-sided CIs: upper bound fixed at (1).

Posttest, pretest*el

posttest_pretest_el <- lmer(postpercent ~ prepercent + el + frlunch + male + white + prepercent * el + prepercent * frlunch + prepercent * male + prepercent * white + el * frlunch + el * white + el * male + frlunch * white + frlunch * male + white * male + (1 | t_id), data = final_data)
r2(posttest_pretest_el)
# R2 for Mixed Models

  Conditional R2: 0.454
     Marginal R2: 0.231
summary(posttest_pretest_el)
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: postpercent ~ prepercent + el + frlunch + male + white + prepercent *  
    el + prepercent * frlunch + prepercent * male + prepercent *  
    white + el * frlunch + el * white + el * male + frlunch *  
    white + frlunch * male + white * male + (1 | t_id)
   Data: final_data

REML criterion at convergence: 44194

Scaled residuals: 
   Min     1Q Median     3Q    Max 
-6.146 -0.458  0.089  0.626  3.480 

Random effects:
 Groups   Name        Variance Std.Dev.
 t_id     (Intercept)  70.1     8.37   
 Residual             171.7    13.10   
Number of obs: 5469, groups:  t_id, 236

Fixed effects:
                                  Estimate Std. Error        df t value
(Intercept)                        67.7780     1.1912 2613.2557   56.90
prepercent                          0.3190     0.0183 5428.0963   17.38
elELs                              -7.2096     1.7888 5296.5945   -4.03
frlunchlow_SES                     -3.1426     1.0606 5395.6418   -2.96
maleMale                            1.4159     1.0212 5260.6555    1.39
whitenon_Minority                   2.0176     1.0597 5294.6704    1.90
prepercent:elELs                    0.0695     0.0279 5320.7234    2.49
prepercent:frlunchlow_SES           0.0461     0.0174 5428.6126    2.65
prepercent:maleMale                -0.0237     0.0153 5261.1301   -1.55
prepercent:whitenon_Minority       -0.0239     0.0167 5305.0136   -1.43
elELs:frlunchlow_SES               -0.6092     1.4521 5298.8825   -0.42
elELs:whitenon_Minority             2.8501     2.2868 5271.9067    1.25
elELs:maleMale                      0.6731     1.2550 5264.4600    0.54
frlunchlow_SES:whitenon_Minority   -1.2322     0.8082 5311.6098   -1.52
frlunchlow_SES:maleMale             0.5713     0.7659 5270.0186    0.75
maleMale:whitenon_Minority          0.8050     0.7800 5265.9265    1.03
                                 Pr(>|t|)    
(Intercept)                       < 2e-16 ***
prepercent                        < 2e-16 ***
elELs                             5.6e-05 ***
frlunchlow_SES                     0.0031 ** 
maleMale                           0.1656    
whitenon_Minority                  0.0570 .  
prepercent:elELs                   0.0127 *  
prepercent:frlunchlow_SES          0.0081 ** 
prepercent:maleMale                0.1209    
prepercent:whitenon_Minority       0.1515    
elELs:frlunchlow_SES               0.6748    
elELs:whitenon_Minority            0.2127    
elELs:maleMale                     0.5917    
frlunchlow_SES:whitenon_Minority   0.1274    
frlunchlow_SES:maleMale            0.4558    
maleMale:whitenon_Minority         0.3021    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
a <- plot_model(posttest_pretest_el, type = "int")
a[[1]] + theme_apa()

a[[2]] + theme_apa()

a[[3]] + theme_apa()

a[[4]] + theme_apa()

a[[5]] + theme_apa()

a[[6]] + theme_apa()

a[[7]] + theme_apa()

a[[8]] + theme_apa()

a[[9]] + theme_apa()

a[[10]] + theme_apa()

 

Comments

Popular posts from this blog

Education Matters: Understanding Nepal’s Education (Publication Date: June 19, 2023, Ratopati-English, Link at the End)

Navigating the AI Revolution: A Review of "Co-Intelligence: Living and Working with AI" by Ethan Mollick

charting Concept and Computation: Maps for the Deep Learning Frontier