Testing EdSurvey, WeMix, Dire, MICE and Other Important R packages with Sample Educational Research PART 3

 

Part III            Part I        Part II

AUTHOR
AFFILIATION

K-16 Literacy Center at University of Texas at Tyler

PUBLISHED

February 28, 2023

# Loading Files
teacher_final <- read.csv("C:/Users/nghimire/OneDrive - The University of Texas at Tyler/Redirected Folders/Documents/edsurvey_PISA_USA/teacher_data_final.csv",
  as.is = TRUE
)
str(teacher_final)
'data.frame':   3526 obs. of  14 variables:
 $ school_id    : int  1 1 1 1 1 1 1 1 1 1 ...
 $ teacher_id   : int  593 3408 1829 471 2114 1269 1379 3595 2183 669 ...
 $ gender       : int  0 0 0 0 0 NA 1 1 0 0 ...
 $ age          : int  49 42 50 50 56 NA 45 31 55 48 ...
 $ teacher_type : int  1 1 1 1 1 NA 0 1 1 1 ...
 $ full_time    : int  0 0 0 0 0 NA 0 0 0 0 ...
 $ emp_stat     : int  0 0 0 0 0 NA 0 0 0 0 ...
 $ teaching_exp : int  20 12 21 26 29 NA 16 8 13 25 ...
 $ teacher_edu  : int  2 2 2 2 2 NA 2 2 2 1 ...
 $ initial_qual : int  0 0 0 0 0 NA 0 0 0 0 ...
 $ training     : int  0 1 1 1 1 NA NA 1 1 1 ...
 $ workshop     : int  0 0 0 0 0 NA NA 0 0 1 ...
 $ prof_dev     : int  0 0 0 0 0 NA 0 0 0 0 ...
 $ reading_score: num  510 510 510 510 510 ...
# summary(teacher_final)

teacher_imputed <- read.csv("C:/Users/nghimire/OneDrive - The University of Texas at Tyler/Redirected Folders/Documents/edsurvey_PISA_USA/imputed_teacher_data.csv",
  as.is = TRUE
)
str(teacher_imputed)
'data.frame':   3526 obs. of  14 variables:
 $ school_id    : int  1 1 1 1 1 1 1 1 1 1 ...
 $ teacher_id   : int  593 3408 1829 471 2114 1269 1379 3595 2183 669 ...
 $ gender       : int  0 0 0 0 0 1 1 1 0 0 ...
 $ age          : int  49 42 50 50 56 31 45 31 55 48 ...
 $ teacher_type : int  1 1 1 1 1 0 0 1 1 1 ...
 $ full_time    : int  0 0 0 0 0 0 0 0 0 0 ...
 $ emp_stat     : int  0 0 0 0 0 0 0 0 0 0 ...
 $ teaching_exp : int  20 12 21 26 29 9 16 8 13 25 ...
 $ teacher_edu  : int  2 2 2 2 2 1 2 2 2 1 ...
 $ initial_qual : int  0 0 0 0 0 0 0 0 0 0 ...
 $ training     : int  0 1 1 1 1 0 0 1 1 1 ...
 $ workshop     : int  0 0 0 0 0 0 0 0 0 1 ...
 $ prof_dev     : int  0 0 0 0 0 0 0 0 0 0 ...
 $ reading_score: num  510 510 510 510 510 ...
# Teacher Data
teacher_final$teacher_id <- as.factor(teacher_final$teacher_id)
teacher_final$gender <- factor(teacher_final$gender, levels = c(0, 1), labels = c("Female", "Male"))
teacher_final$teacher_type <- factor(teacher_final$teacher_type, levels = c(0, 1), labels = c("Reading-Language Teacher", "General Teacher"))
teacher_final$full_time <- factor(teacher_final$full_time, levels = c(0, 1), labels = c("Full-Time", "Part-Time"))
teacher_final$emp_stat <- factor(teacher_final$emp_stat, levels = c(0, 1, 2, 3), labels = c("Full-Time", "Part-Time, 71-90% of Full-Time Hours", "Part-Time, 50-70% of Full-Time Hours", "Part-Time, less than 50% of Full-Time Hours"))
teacher_final$teacher_edu <- factor(teacher_final$teacher_edu, levels = c(0, 1, 2), labels = c("None. No Teacher Education", "Program of 1 Year or Less", "Yes, Program Longer than 1 Year"))
teacher_final$initial_qual <- factor(teacher_final$initial_qual, levels = c(0, 1, 2, 3, 4), labels = c("Pre-service: Strandard Teacher Training Program", "In-service: Teacher Training Program", "Work-Based Teacher Training", "Training on Another Pedagogical Profession", "Other"))
teacher_final$training <- factor(teacher_final$training, levels = c(0, 1), labels = c("Participated", "Didn't Participate"))
teacher_final$workshop <- factor(teacher_final$workshop, levels = c(0, 1), labels = c("Participated", "Didn't Participate"))
teacher_final$prof_dev <- factor(teacher_final$prof_dev, levels = c(0, 1), labels = c("Participated", "Didn't Participate"))

summary(teacher_final)
   school_id        teacher_id      gender          age       
 Min.   :  1.00   1      :   1   Female:1784   Min.   :20.00  
 1st Qu.: 47.00   2      :   1   Male  :1019   1st Qu.:34.00  
 Median : 88.00   3      :   1   NA's  : 723   Median :42.00  
 Mean   : 88.29   4      :   1                 Mean   :42.87  
 3rd Qu.:131.00   5      :   1                 3rd Qu.:51.00  
 Max.   :175.00   6      :   1                 Max.   :70.00  
                  (Other):3520                 NA's   :700    
                   teacher_type      full_time   
 Reading-Language Teacher:1049   Full-Time:2773  
 General Teacher         :1812   Part-Time:  60  
 NA's                    : 665   NA's     : 693  
                                                 
                                                 
                                                 
                                                 
                                        emp_stat     teaching_exp  
 Full-Time                                  :2773   Min.   : 0.00  
 Part-Time, 71-90% of Full-Time Hours       :  22   1st Qu.: 7.00  
 Part-Time, 50-70% of Full-Time Hours       :  21   Median :14.00  
 Part-Time, less than 50% of Full-Time Hours:  17   Mean   :14.95  
 NA's                                       : 693   3rd Qu.:21.00  
                                                    Max.   :50.00  
                                                    NA's   :741    
                          teacher_edu  
 None. No Teacher Education     : 229  
 Program of 1 Year or Less      : 577  
 Yes, Program Longer than 1 Year:2022  
 NA's                           : 698  
                                       
                                       
                                       
                                          initial_qual 
 Pre-service: Strandard Teacher Training Program:2303  
 In-service: Teacher Training Program           : 113  
 Work-Based Teacher Training                    : 241  
 Training on Another Pedagogical Profession     :  31  
 Other                                          : 142  
 NA's                                           : 696  
                                                       
               training                  workshop                  prof_dev   
 Participated      : 429   Participated      :1637   Participated      :2753  
 Didn't Participate:1311   Didn't Participate: 128   Didn't Participate:  51  
 NA's              :1786   NA's              :1761   NA's              : 722  
                                                                              
                                                                              
                                                                              
                                                                              
 reading_score  
 Min.   :260.3  
 1st Qu.:468.2  
 Median :502.7  
 Mean   :505.1  
 3rd Qu.:537.1  
 Max.   :608.0  
                
# Imputed Data
teacher_imputed$teacher_id <- as.factor(teacher_imputed$teacher_id)
teacher_imputed$gender <- factor(teacher_imputed$gender, levels = c(0, 1), labels = c("Female", "Male"))
teacher_imputed$teacher_type <- factor(teacher_imputed$teacher_type, levels = c(0, 1), labels = c("Reading-Language Teacher", "General Teacher"))
teacher_imputed$full_time <- factor(teacher_imputed$full_time, levels = c(0, 1), labels = c("Full-Time", "Part-Time"))
teacher_imputed$emp_stat <- factor(teacher_imputed$emp_stat, levels = c(0, 1, 2, 3), labels = c("Full-Time", "Part-Time, 71-90% of Full-Time Hours", "Part-Time, 50-70% of Full-Time Hours", "Part-Time, less than 50% of Full-Time Hours"))
teacher_imputed$teacher_edu <- factor(teacher_imputed$teacher_edu, levels = c(0, 1, 2), labels = c("None. No Teacher Education", "Program of 1 Year or Less", "Yes, Program Longer than 1 Year"))
teacher_imputed$initial_qual <- factor(teacher_imputed$initial_qual, levels = c(0, 1, 2, 3, 4), labels = c("Pre-service: Strandard Teacher Training Program", "In-service: Teacher Training Program", "Work-Based Teacher Training", "Training on Another Pedagogical Profession", "Other"))
teacher_imputed$training <- factor(teacher_imputed$training, levels = c(0, 1), labels = c("Participated", "Didn't Participate"))
teacher_imputed$workshop <- factor(teacher_imputed$workshop, levels = c(0, 1), labels = c("Participated", "Didn't Participate"))
teacher_imputed$prof_dev <- factor(teacher_imputed$prof_dev, levels = c(0, 1), labels = c("Participated", "Didn't Participate"))

summary(teacher_imputed)
   school_id        teacher_id      gender          age       
 Min.   :  1.00   1      :   1   Female:2217   Min.   :20.00  
 1st Qu.: 47.00   2      :   1   Male  :1309   1st Qu.:34.00  
 Median : 88.00   3      :   1                 Median :42.00  
 Mean   : 88.29   4      :   1                 Mean   :42.82  
 3rd Qu.:131.00   5      :   1                 3rd Qu.:51.00  
 Max.   :175.00   6      :   1                 Max.   :70.00  
                  (Other):3520                                
                   teacher_type      full_time   
 Reading-Language Teacher:1325   Full-Time:3457  
 General Teacher         :2201   Part-Time:  69  
                                                 
                                                 
                                                 
                                                 
                                                 
                                        emp_stat     teaching_exp  
 Full-Time                                  :3457   Min.   : 0.00  
 Part-Time, 71-90% of Full-Time Hours       :  26   1st Qu.: 7.00  
 Part-Time, 50-70% of Full-Time Hours       :  25   Median :14.00  
 Part-Time, less than 50% of Full-Time Hours:  18   Mean   :14.73  
                                                    3rd Qu.:21.00  
                                                    Max.   :50.00  
                                                                   
                          teacher_edu  
 None. No Teacher Education     : 305  
 Program of 1 Year or Less      : 736  
 Yes, Program Longer than 1 Year:2485  
                                       
                                       
                                       
                                       
                                          initial_qual 
 Pre-service: Strandard Teacher Training Program:2838  
 In-service: Teacher Training Program           : 148  
 Work-Based Teacher Training                    : 316  
 Training on Another Pedagogical Profession     :  37  
 Other                                          : 187  
                                                       
                                                       
               training                  workshop                  prof_dev   
 Participated      : 850   Participated      :3287   Participated      :3466  
 Didn't Participate:2676   Didn't Participate: 239   Didn't Participate:  60  
                                                                              
                                                                              
                                                                              
                                                                              
                                                                              
 reading_score  
 Min.   :260.3  
 1st Qu.:468.2  
 Median :502.7  
 Mean   :505.1  
 3rd Qu.:537.1  
 Max.   :608.0  
                

Various Teachers’ Characteristics and Students’ Reading Score

a. Teacher Education

teacher_final |>
  na.omit() |>
  group_by(teacher_edu) |>
  summarise(
    M_EAN = mean(reading_score),
    S_D = sd(reading_score),
    total_teacher = n()
  )
# A tibble: 3 × 4
  teacher_edu                     M_EAN   S_D total_teacher
  <fct>                           <dbl> <dbl>         <int>
1 None. No Teacher Education       492.  55.0           144
2 Program of 1 Year or Less        506.  48.9           334
3 Yes, Program Longer than 1 Year  507.  45.7          1197

b. Teachers’ Gender

teacher_final |>
  na.omit() |>
  group_by(gender) |>
  summarise(
    M_EAN = mean(reading_score),
    S_D = sd(reading_score),
    total_teacher = n()
  )
# A tibble: 2 × 4
  gender M_EAN   S_D total_teacher
  <fct>  <dbl> <dbl>         <int>
1 Female  504.  49.3           949
2 Male    507.  44.8           726

c. Teacher Type

teacher_imputed |>
  na.omit() |>
  group_by(teacher_type) |>
  summarise(
    M_EAN = mean(reading_score),
    S_D = sd(reading_score),
    total_teacher = n()
  )
# A tibble: 2 × 4
  teacher_type             M_EAN   S_D total_teacher
  <fct>                    <dbl> <dbl>         <int>
1 Reading-Language Teacher  507.  49.2          1325
2 General Teacher           504.  49.0          2201

d. Teaching Status

teacher_final |>
  na.omit() |>
  group_by(full_time) |>
  summarise(
    M_EAN = mean(reading_score),
    S_D = sd(reading_score),
    total_teacher = n()
  )
# A tibble: 2 × 4
  full_time M_EAN   S_D total_teacher
  <fct>     <dbl> <dbl>         <int>
1 Full-Time  505.  47.0          1635
2 Part-Time  536.  51.5            40

e. Teaching Status Imputed Data

teacher_imputed |>
  group_by(full_time) |>
  summarise(
    M_EAN = mean(reading_score),
    S_D = sd(reading_score),
    total_teacher = n()
  )
# A tibble: 2 × 4
  full_time M_EAN   S_D total_teacher
  <fct>     <dbl> <dbl>         <int>
1 Full-Time  504.  48.9          3457
2 Part-Time  536.  47.3            69

f. Employment Status

teacher_final |>
  na.omit() |>
  group_by(emp_stat) |>
  summarise(
    M_EAN = mean(reading_score),
    S_D = sd(reading_score),
    total_teacher = n()
  )
# A tibble: 4 × 4
  emp_stat                                    M_EAN   S_D total_teacher
  <fct>                                       <dbl> <dbl>         <int>
1 Full-Time                                    505.  47.0          1635
2 Part-Time, 71-90% of Full-Time Hours         546.  39.0            11
3 Part-Time, 50-70% of Full-Time Hours         540.  58.3            15
4 Part-Time, less than 50% of Full-Time Hours  523.  53.4            14

g. Initial Qualification

teacher_final |>
  na.omit() |>
  group_by(initial_qual) |>
  summarise(
    M_EAN = mean(reading_score),
    S_D = sd(reading_score),
    total_teacher = n()
  )
# A tibble: 5 × 4
  initial_qual                                    M_EAN   S_D total_teacher
  <fct>                                           <dbl> <dbl>         <int>
1 Pre-service: Strandard Teacher Training Program  507.  46.8          1348
2 In-service: Teacher Training Program             498.  53.1            80
3 Work-Based Teacher Training                      497.  50.1           145
4 Training on Another Pedagogical Profession       483.  39.6            22
5 Other                                            500.  44.9            80

g. Teacher Training Opportunities in Last 12-Months’ Period

teacher_final |>
  na.omit() |>
  group_by(training) |>
  summarise(
    M_EAN = mean(reading_score),
    S_D = sd(reading_score),
    total_teacher = n()
  )
# A tibble: 2 × 4
  training           M_EAN   S_D total_teacher
  <fct>              <dbl> <dbl>         <int>
1 Participated        503.  46.4           405
2 Didn't Participate  506.  47.7          1270

h. Workshop Opportunities in Last 12-Months’ Period

teacher_final |>
  na.omit() |>
  group_by(workshop) |>
  summarise(
    M_EAN = mean(reading_score),
    S_D = sd(reading_score),
    total_teacher = n()
  )
# A tibble: 2 × 4
  workshop           M_EAN   S_D total_teacher
  <fct>              <dbl> <dbl>         <int>
1 Participated        505.  46.7          1552
2 Didn't Participate  504.  54.9           123

i. Professional Development Opportunity in Last 12-Months’ Period

teacher_final |>
  na.omit() |>
  group_by(prof_dev) |>
  summarise(
    M_EAN = mean(reading_score),
    S_D = sd(reading_score),
    total_teacher = n()
  )
# A tibble: 2 × 4
  prof_dev           M_EAN   S_D total_teacher
  <fct>              <dbl> <dbl>         <int>
1 Participated        505.  47.0          1644
2 Didn't Participate  519.  64.8            31

Teacher Education and Students’ Reading Scores

teacher_edu_density <- teacher_imputed |>
  ggplot(aes(x = reorder(teacher_edu, reading_score), y = reading_score)) +
  geom_boxplot(fill = "white", colour = "blue", varwidth = TRUE) +
  geom_hline(yintercept = 505, label = "National Average", hjust = 1, vjust = 0.5, size = .3) +
  labs(
    title = "Comparative Reading Scores Based on Teachers' Education",
    x = "Teacher Education",
    y = "Reading Scores"
  ) +
  geom_text(
    label = "National Average",
    x = 1.4, y = 370,
    family = "serif",
    size = 2.3
  ) +
  geom_segment(aes(x = 1.4, y = 400, xend = 1.4, yend = 500),
    linewidth = 0.06,
    arrow = arrow(length = unit(.05, "cm"))
  ) +
  theme(legend.position = "none") +
  coord_flip() +
  theme_classic()
teacher_edu_density

# ggsave("teacher_education_vs_reading_scores.tiff", units="in", width=6.5, height=4, #dpi=300, compression = 'lzw')

Teacher Type, Teaching Experience, and Students’ Readign Scores

library(dendextend)
english_teacher <- subset(teacher_imputed, teacher_type == "Reading-Language Teacher")
# head(english_teacher)
general_teacher <- subset(teacher_imputed, teacher_type == "General Teacher")
# head(general_teacher)

et_box <- ggplot(
  teacher_imputed,
  aes(teacher_type, reading_score)
) +
  geom_boxplot(alpha = 0.5, width = 0.3) +
  stat_summary(fun = mean, size = 2, geom = "point") +
  stat_summary(
    fun = mean, geom = "text", vjust = -0.6,
    aes(label = paste(round(..y.., digits = 2)))
  ) +
  scale_x_discrete(labels = c("Reading Teacher", "General Teacher")) +
  ggpubr::theme_classic2()
# et_box


library(geomtextpath)
te_scat <- ggplot(
  teacher_imputed,
  aes(x = reading_score, y = teaching_exp, color = teacher_type, label = teacher_type)
) +
  geom_labelsmooth(method = "lm", boxlinewidth = 0) +
  labs(
    title = "",
    x = "Reading Scores",
    y = "Teaching Experience"
  ) +
  theme_classic() +
  theme(legend.position = "none")
# Putting Plots Together
comined_plot <- ggpubr::ggarrange(et_box, te_scat,
  ncol = 2, align = "h",
  common.legend = FALSE
)
comined_plot

# ggsave("teacher_type_experience_reading_scores.tiff", units="in", width=6.5, height=4, #dpi=300, compression = 'lzw')

Hierarchical Linear Models

Null Models

hlm_null <- nlme::gls(reading_score ~ 1, data = teacher_final, method = "ML")

hlm_null_intercept <- nlme::lme(reading_score ~ 1, data = teacher_imputed, random = ~ 1 | school_id, method = "ML")

anova(hlm_null, hlm_null_intercept)
                   Model df        AIC        BIC    logLik   Test  L.Ratio
hlm_null               1  2   37461.77   37474.11 -18728.88                
hlm_null_intercept     2  3 -183939.50 -183921.00  91972.75 1 vs 2 221403.3
                   p-value
hlm_null                  
hlm_null_intercept  <.0001

Null Model with Imputed Data

hlm_null_1 <- nlme::gls(reading_score ~ 1, data = teacher_imputed, method = "ML")

summary(hlm_null_1)
Generalized least squares fit by maximum likelihood
  Model: reading_score ~ 1 
  Data: teacher_imputed 
       AIC      BIC    logLik
  37461.77 37474.11 -18728.88

Coefficients:
               Value Std.Error  t-value p-value
(Intercept) 505.0998 0.8260463 611.4666       0

Standardized residuals:
       Min         Q1        Med         Q3        Max 
-4.9921366 -0.7526429 -0.0486434  0.6515983  2.0980977 

Residual standard error: 49.04378 
Degrees of freedom: 3526 total; 3525 residual

Null Model with Random Intercept

hlm_null_1_intercept <- nlme::lme(reading_score ~ 1, data = teacher_imputed, random = ~ 1 | school_id, method = "ML")

summary(hlm_null_1_intercept)
Linear mixed-effects model fit by maximum likelihood
  Data: teacher_imputed 
        AIC     BIC   logLik
  -183939.5 -183921 91972.75

Random effects:
 Formula: ~1 | school_id
        (Intercept)     Residual
StdDev:    410.8049 2.195108e-13

Fixed effects:  reading_score ~ 1 
               Value Std.Error   DF  t-value p-value
(Intercept) 94.52194  5.924571 3368 15.95422       0

Standardized Within-Group Residuals:
     Min       Q1      Med       Q3      Max 
-2.58955 -1.03582  0.00000  1.03582  2.58955 

Number of Observations: 3526
Number of Groups: 158 

Model Comparison

anova(hlm_null_1, hlm_null_1_intercept)
                     Model df        AIC        BIC    logLik   Test  L.Ratio
hlm_null_1               1  2   37461.77   37474.11 -18728.88                
hlm_null_1_intercept     2  3 -183939.50 -183921.00  91972.75 1 vs 2 221403.3
                     p-value
hlm_null_1                  
hlm_null_1_intercept  <.0001

Teacher Null

teacher_null <- nlme::gls(reading_score ~ 1, data = teacher_imputed, method = "ML")
summary(teacher_null)
Generalized least squares fit by maximum likelihood
  Model: reading_score ~ 1 
  Data: teacher_imputed 
       AIC      BIC    logLik
  37461.77 37474.11 -18728.88

Coefficients:
               Value Std.Error  t-value p-value
(Intercept) 505.0998 0.8260463 611.4666       0

Standardized residuals:
       Min         Q1        Med         Q3        Max 
-4.9921366 -0.7526429 -0.0486434  0.6515983  2.0980977 

Residual standard error: 49.04378 
Degrees of freedom: 3526 total; 3525 residual
teacher_null_rintercept <- nlme::lme(reading_score ~ 1, data = teacher_imputed, random = ~ 1 | teacher_id, method = "ML")
summary(teacher_null_rintercept)
Linear mixed-effects model fit by maximum likelihood
  Data: teacher_imputed 
       AIC      BIC    logLik
  37463.77 37482.27 -18728.88

Random effects:
 Formula: ~1 | teacher_id
        (Intercept) Residual
StdDev:    45.92112 17.22042

Fixed effects:  reading_score ~ 1 
               Value Std.Error   DF  t-value p-value
(Intercept) 505.0998 0.8260463 3526 611.4666       0

Standardized Within-Group Residuals:
        Min          Q1         Med          Q3         Max 
-1.75285618 -0.26427058 -0.01707984  0.22879143  0.73669128 

Number of Observations: 3526
Number of Groups: 3526 
anova(teacher_null, teacher_null_rintercept)
                        Model df      AIC      BIC    logLik   Test
teacher_null                1  2 37461.77 37474.11 -18728.88       
teacher_null_rintercept     2  3 37463.77 37482.27 -18728.88 1 vs 2
                             L.Ratio p-value
teacher_null                                
teacher_null_rintercept 2.910383e-11       1

HLM Full

{r hlm_gender}
hlm_full <- lmer(reading_score ~ gender + age + teacher_type + full_time + teaching_exp + teacher_edu + initial_qual + training + workshop + prof_dev + (gender + age + teacher_type + full_time + teaching_exp + teacher_edu + initial_qual + training + workshop + prof_dev| school_id), data = teacher_imputed)

summary(hlm_full)

#effectsize::standardize_parameters(hlm_full, method = "pseudo")

#confint(hlm_full)

Quantile Regression for Visualiztion

library(quantreg)
quant_1 <- rq(formula = reading_score ~ teaching_exp, tau = c(.05, .25, .50, .75, .95), data = teacher_imputed, method = "fn")
summary(quant_1, se = "nid")

Call: rq(formula = reading_score ~ teaching_exp, tau = c(0.05, 0.25, 
    0.5, 0.75, 0.95), data = teacher_imputed, method = "fn")

tau: [1] 0.05

Coefficients:
             Value     Std. Error t value   Pr(>|t|) 
(Intercept)  424.04053   2.18066  194.45492   0.00000
teaching_exp   0.44547   0.11647    3.82486   0.00013

Call: rq(formula = reading_score ~ teaching_exp, tau = c(0.05, 0.25, 
    0.5, 0.75, 0.95), data = teacher_imputed, method = "fn")

tau: [1] 0.25

Coefficients:
             Value     Std. Error t value   Pr(>|t|) 
(Intercept)  461.07650   2.04513  225.45113   0.00000
teaching_exp   0.57290   0.14809    3.86867   0.00011

Call: rq(formula = reading_score ~ teaching_exp, tau = c(0.05, 0.25, 
    0.5, 0.75, 0.95), data = teacher_imputed, method = "fn")

tau: [1] 0.5

Coefficients:
             Value     Std. Error t value   Pr(>|t|) 
(Intercept)  498.88172   1.47120  339.09852   0.00000
teaching_exp   0.34250   0.09786    3.50003   0.00047

Call: rq(formula = reading_score ~ teaching_exp, tau = c(0.05, 0.25, 
    0.5, 0.75, 0.95), data = teacher_imputed, method = "fn")

tau: [1] 0.75

Coefficients:
             Value     Std. Error t value   Pr(>|t|) 
(Intercept)  531.30341   1.60117  331.82253   0.00000
teaching_exp   0.43676   0.13088    3.33706   0.00086

Call: rq(formula = reading_score ~ teaching_exp, tau = c(0.05, 0.25, 
    0.5, 0.75, 0.95), data = teacher_imputed, method = "fn")

tau: [1] 0.95

Coefficients:
             Value     Std. Error t value   Pr(>|t|) 
(Intercept)  575.74579   3.23678  177.87625   0.00000
teaching_exp   0.55283   0.09599    5.75935   0.00000
# Plotting the Output and Saving as .pdf
pdf("teaching_experience_readin_score.pdf", width = 6.5, height = 7)
plot(quant_1)
dev.off()
png 
  2 

“nid” for SE are computed using the Hall-Sheather bandwidth rule. We can use “ker” instead, if we want Powell kernel version, “boot” for bootstrap, etc. (visit: https://cran.r-project.org/web/packages/quantreg/vignettes/rq.pdf)

teacher_imputed$reading_score <- as.numeric(as.factor(teacher_imputed$reading_score))
teacher_imputed$teaching_exp <- as.numeric(as.factor(teacher_imputed$teaching_exp))
attach(teacher_imputed)
png("quantile_experience_vs_reading_scores.png")
plot(reading_score, teaching_exp, xlab = "Students' Reading Scores", ylab = "Teacher Experience in Years", type = "n", xaxt = "n")
tau_s <- c(.1, .25, .75, .95)

abline(rq(log10(reading_score) ~ log10(teaching_exp), tau = .5), col = "blue")
abline(lm(log10(reading_score) ~ log10(teaching_exp), lty = 3), col = "red")
for (i in 1:length(tau_s)) {
  abline(rq(log10(reading_score) ~ log10(teaching_exp), tau = tau_s[i]), col = "gray")
}

dev.off()
png 
  2 

Age and Students’ Reading Scores

quant_3 <- rq(formula = reading_score ~ age, tau = c(0.05, .25, .50, .75, 0.95), data = teacher_imputed, method = "fn")
summary(quant_3)

Call: rq(formula = reading_score ~ age, tau = c(0.05, 0.25, 0.5, 0.75, 
    0.95), data = teacher_imputed, method = "fn")

tau: [1] 0.05

Coefficients:
            Value   Std. Error t value Pr(>|t|)
(Intercept) 6.14286 2.43443    2.52333 0.01167 
age         0.11429 0.05760    1.98425 0.04731 

Call: rq(formula = reading_score ~ age, tau = c(0.05, 0.25, 0.5, 0.75, 
    0.95), data = teacher_imputed, method = "fn")

tau: [1] 0.25

Coefficients:
            Value    Std. Error t value  Pr(>|t|)
(Intercept) 40.82143  4.33812    9.40994  0.00000
age          0.03571  0.09872    0.36177  0.71755

Call: rq(formula = reading_score ~ age, tau = c(0.05, 0.25, 0.5, 0.75, 
    0.95), data = teacher_imputed, method = "fn")

tau: [1] 0.5

Coefficients:
            Value    Std. Error t value  Pr(>|t|)
(Intercept) 79.28571  4.93394   16.06944  0.00000
age          0.07143  0.11427    0.62506  0.53197

Call: rq(formula = reading_score ~ age, tau = c(0.05, 0.25, 0.5, 0.75, 
    0.95), data = teacher_imputed, method = "fn")

tau: [1] 0.75

Coefficients:
            Value     Std. Error t value   Pr(>|t|) 
(Intercept) 111.65217   4.26656   26.16913   0.00000
age           0.21739   0.09644    2.25425   0.02424

Call: rq(formula = reading_score ~ age, tau = c(0.05, 0.25, 0.5, 0.75, 
    0.95), data = teacher_imputed, method = "fn")

tau: [1] 0.95

Coefficients:
            Value     Std. Error t value   Pr(>|t|) 
(Intercept) 144.23077   2.06996   69.67806   0.00000
age           0.15385   0.04276    3.59797   0.00033
plot(quant_3)

# Plotting the Output and Saving as .pdf
pdf("age_reading_score.pdf", width = 6.5, height = 7)
plot(quant_3)
dev.off()
png 
  2 

Age and Teacher Experience

quant_4 <- rq(formula = age ~ teaching_exp, tau = c(.1, .25, 0.5, .75, .95), data = teacher_imputed)
summary(quant_4)

Call: rq(formula = age ~ teaching_exp, tau = c(0.1, 0.25, 0.5, 0.75, 
    0.95), data = teacher_imputed)

tau: [1] 0.1

Coefficients:
             Value    Std. Error t value  Pr(>|t|)
(Intercept)  20.00000  0.21461   93.19064  0.00000
teaching_exp  1.00000  0.01168   85.63326  0.00000

Call: rq(formula = age ~ teaching_exp, tau = c(0.1, 0.25, 0.5, 0.75, 
    0.95), data = teacher_imputed)

tau: [1] 0.25

Coefficients:
             Value     Std. Error t value   Pr(>|t|) 
(Intercept)   22.00000   0.15928  138.12062   0.00000
teaching_exp   1.00000   0.00867  115.38145   0.00000

Call: rq(formula = age ~ teaching_exp, tau = c(0.1, 0.25, 0.5, 0.75, 
    0.95), data = teacher_imputed)

tau: [1] 0.5

Coefficients:
             Value    Std. Error t value  Pr(>|t|)
(Intercept)  25.38095  0.27053   93.82019  0.00000
teaching_exp  0.95238  0.01257   75.76389  0.00000

Call: rq(formula = age ~ teaching_exp, tau = c(0.1, 0.25, 0.5, 0.75, 
    0.95), data = teacher_imputed)

tau: [1] 0.75

Coefficients:
             Value    Std. Error t value  Pr(>|t|)
(Intercept)  33.33333  0.54053   61.66837  0.00000
teaching_exp  0.83333  0.02270   36.70662  0.00000

Call: rq(formula = age ~ teaching_exp, tau = c(0.1, 0.25, 0.5, 0.75, 
    0.95), data = teacher_imputed)

tau: [1] 0.95

Coefficients:
             Value    Std. Error t value  Pr(>|t|)
(Intercept)  50.50000  0.70267   71.86861  0.00000
teaching_exp  0.50000  0.02896   17.26674  0.00000
# Plotting the Output and Saving as .pdf
plot(quant_4)

Reading Scores Description

# (3526) reading scores
teacher_final |>
  summarise(
    M_EAN = mean(reading_score),
    S_D = sd(reading_score),
    total_teacher = n()
  )
     M_EAN      S_D total_teacher
1 505.0998 49.05074          3526
# (1675 teachers)
teacher_final |>
  na.omit() |>
  summarise(
    M_EAN = mean(age),
    S_D = sd(age),
    total_teacher = n()
  )
     M_EAN      S_D total_teacher
1 43.65313 11.16418          1675
# (1675 teachers)
teacher_final |>
  na.omit() |>
  summarise(
    M_EAN = mean(teaching_exp),
    S_D = sd(teaching_exp),
    total_teacher = n()
  )
     M_EAN      S_D total_teacher
1 15.32896 9.588603          1675

Comments

Popular posts from this blog

Education Matters: Understanding Nepal’s Education (Publication Date: June 19, 2023, Ratopati-English, Link at the End)

Navigating the AI Revolution: A Review of "Co-Intelligence: Living and Working with AI" by Ethan Mollick

charting Concept and Computation: Maps for the Deep Learning Frontier