Testing EdSurvey, WeMix, Dire, MICE and Other Important R packages with Sample Educational Research PART 2

 

Part II        Part I        Part III

AUTHOR
AFFILIATION

K-16 Literacy Center at University of Texas at Tyler

PUBLISHED

February 28, 2023

Student Cognitive Data (School Average)

'data.frame':   164 obs. of  9 variables:
 $ SN      : int  1 2 3 4 5 6 7 8 9 10 ...
 $ cntschid: int  84000001 84000002 84000004 84000005 84000006 84000007 84000008 84000009 84000010 84000011 ...
 $ N       : int  28 36 35 28 1 6 27 30 30 35 ...
 $ WTD_N   : num  17410 19312 15465 26753 820 ...
 $ PCT     : num  0.489 0.543 0.435 0.752 0.023 ...
 $ SE.PCT. : num  0.4961 0.4772 0.442 0.7666 0.0178 ...
 $ MEAN    : num  510 446 435 501 260 ...
 $ SE.MEAN.: chr  "6.383587" "5.111687" "4.00493" "5.773581" ...
 $ X       : num  500 NA NA NA NA ...
### c. Changing Names of the Students' Cognitive Scores
teacher_2_sub <- teacher_2 |>
  select(cntschid, MEAN) |>
  mutate(
    school_id = cntschid, reading_score = MEAN,
    cntschid = NULL, MEAN = NULL
  )
# summary(teacher_2_sub)
### d. Changing Types of Certain Variables
teacher_2_sub$school_id <- as.factor(teacher_2_sub$school_id)
teacher_1$school_id <- as.factor(teacher_1$CNTSCHID)
# str(teacher_1$school_id)
# str(teacher_2_sub$school_id)

Working on Teacher Only Dataset

teacher_1_sub <- teacher_1 |>
  select(school_id, CNTTCHID, TEACHERID, TC_SEX, TC_AGE, TC_EMPLST, TC_TCEXP, TC_TEDU, TC_INITQUAL, TC_PD, TC_WORKSHOP, TC_TRAINING, EMPLTIM) |>
  janitor::clean_names() |>
  mutate(
    teacher_type = as.factor(teacherid),
    teacher_id = as.factor(cnttchid),
    tc_sex = as.factor(tc_sex),
    tc_age = as.double(tc_age),
    tc_emplst = as.factor(tc_emplst),
    tc_tcexp = as.double(tc_tcexp),
    tc_tedu = as.factor(tc_tedu),
    tc_initqual = as.factor(tc_initqual),
    tc_pd = as.factor(tc_pd),
    tc_workshop = as.factor(tc_workshop),
    tc_training = as.factor(tc_training),
    empltim = as.factor(empltim),
    teacherid = NULL
  )
str(teacher_1_sub)
tibble [3,526 × 14] (S3: tbl_df/tbl/data.frame)
 $ school_id   : Factor w/ 158 levels "84000001","84000002",..: 132 10 74 72 147 120 147 69 81 71 ...
 $ cnttchid    : num [1:3526] 8.4e+07 8.4e+07 8.4e+07 8.4e+07 8.4e+07 ...
  ..- attr(*, "label")= chr "Intl. Teacher ID"
  ..- attr(*, "format.spss")= chr "F8.0"
  ..- attr(*, "display_width")= int 10
 $ tc_sex      : Factor w/ 2 levels "1","2": 2 2 2 1 1 1 NA 2 2 1 ...
 $ tc_age      : num [1:3526] 46 58 32 34 22 38 NA 24 41 26 ...
 $ tc_emplst   : Factor w/ 4 levels "1","2","3","4": 1 4 1 1 1 1 NA 1 1 1 ...
 $ tc_tcexp    : num [1:3526] 22 36 4 13 2 11 NA 1 17 5 ...
 $ tc_tedu     : Factor w/ 3 levels "1","2","3": 2 2 1 3 3 2 NA 1 2 2 ...
 $ tc_initqual : Factor w/ 5 levels "1","2","3","4",..: 1 1 2 1 1 1 NA 3 1 1 ...
 $ tc_pd       : Factor w/ 2 levels "1","2": 1 1 1 1 1 1 NA 1 1 1 ...
 $ tc_workshop : Factor w/ 2 levels "1","2": NA 1 1 1 NA 1 NA NA NA 1 ...
 $ tc_training : Factor w/ 2 levels "1","2": NA 2 1 NA NA 2 NA NA NA 1 ...
 $ empltim     : Factor w/ 2 levels "1","2": 1 2 1 1 1 1 NA 1 1 1 ...
 $ teacher_type: Factor w/ 2 levels "4","5": 1 2 2 2 1 2 NA 1 1 2 ...
 $ teacher_id  : Factor w/ 3526 levels "84000001","84000002",..: 1 2 3 4 5 6 7 8 9 10 ...
#### e.1. Summarizing the data
# summary(teacher_1_sub)
### f. Merging Data Tables, and Getting Data Table Ready
teacher_data <- merge(teacher_1_sub, teacher_2_sub, by = "school_id")

### Changing to Data Frame and Getting Rid of Repeated Column
teacher_data <- data.frame(teacher_data) |>
  mutate(cnttchid = NULL) |>
  select(
    school_id, teacher_id, tc_sex, tc_age, teacher_type, empltim, tc_emplst,
    tc_tcexp, tc_tedu, tc_initqual, tc_training, tc_workshop, tc_pd, reading_score
  )

# Getting Rid of First Four Digits from 'teacher_id' and 'school_id'
teacher_data$school_id <- stringr::str_sub(teacher_data$school_id, -4, -1)
teacher_data$teacher_id <- stringr::str_sub(teacher_data$teacher_id, -4, -1)

# Getting Rid of Leading Zeros
teacher_data$school_id <- stringr::str_remove(teacher_data$school_id, "^0+")
teacher_data$teacher_id <- stringr::str_remove(teacher_data$teacher_id, "^0+")

# summary(teacher_data$school_id)
# tail(teacher_data)
# writing the merged data to local directory
# write.csv(teacher_data, "teacher_data_final.csv", row.names = FALSE)

Getting Descriptive Information using Teacher ID

total_teachers_by_schools <- teacher_data |>
  select(school_id, teacher_id) |>
  group_by(school_id) |>
  count() |>
  rename(total_teachers = n) |>
  mutate(n = NULL) |>
  arrange(desc(total_teachers), desc(as.numeric(school_id))) |>
  data.frame()
head(total_teachers_by_schools)
  school_id total_teachers
1       173             25
2       171             25
3       169             25
4       168             25
5       164             25
6       163             25

Pairwise Correlation Among Variables

i. Among Age, Gender, Teacher Type, Employment Status (Full vs Part-time) & Reading Scores

t_cor <- GGally::ggpairs(teacher_data[, c(3:6, 14)])
t_cor

ii. Among Employment Status, Experience, Teacher Education, Initial Qualification, & Reading Scores

t_cor1 <- GGally::ggpairs(teacher_data[, c(7:10, 14)])
t_cor1

iii. Among Training, Workshop, Professional Development, & Reading Scores

t_cor2 <- GGally::ggpairs(teacher_data[, c(11:14)])
t_cor2

iv. Correlation Statistics Rounded to Two Decimal Places

t_corr3 <- Hmisc::rcorr(as.matrix.data.frame(teacher_data[, -c(1:2)]))
# t_corr3
round(t_corr3$r, digits = 2)
              tc_sex tc_age teacher_type empltim tc_emplst tc_tcexp tc_tedu
tc_sex          1.00   0.06         0.19   -0.02      0.00     0.05    0.00
tc_age          0.06   1.00         0.08    0.07      0.08     0.76    0.01
teacher_type    0.19   0.08         1.00    0.03      0.04     0.05    0.03
empltim        -0.02   0.07         0.03    1.00      0.92     0.04    0.00
tc_emplst       0.00   0.08         0.04    0.92      1.00     0.05    0.02
tc_tcexp        0.05   0.76         0.05    0.04      0.05     1.00    0.03
tc_tedu         0.00   0.01         0.03    0.00      0.02     0.03    1.00
tc_initqual     0.05  -0.02         0.04    0.00      0.02    -0.19    0.09
tc_training    -0.03   0.05          NaN    0.06      0.06     0.09    0.02
tc_workshop     0.06   0.03          NaN    0.14      0.13     0.05   -0.01
tc_pd           0.04   0.04         0.00    0.11      0.15     0.05    0.01
reading_score   0.01   0.05        -0.02    0.11      0.09     0.10   -0.04
              tc_initqual tc_training tc_workshop tc_pd reading_score
tc_sex               0.05       -0.03        0.06  0.04          0.01
tc_age              -0.02        0.05        0.03  0.04          0.05
teacher_type         0.04         NaN         NaN  0.00         -0.02
empltim              0.00        0.06        0.14  0.11          0.11
tc_emplst            0.02        0.06        0.13  0.15          0.09
tc_tcexp            -0.19        0.09        0.05  0.05          0.10
tc_tedu              0.09        0.02       -0.01  0.01         -0.04
tc_initqual          1.00       -0.07        0.00 -0.02         -0.07
tc_training         -0.07        1.00        0.06  0.03          0.02
tc_workshop          0.00        0.06        1.00  0.07          0.00
tc_pd               -0.02        0.03        0.07  1.00          0.05
reading_score       -0.07        0.02        0.00  0.05          1.00

v. Assocaited P-Values for Correlation Statistics Rounded to Three Decimal Places

round(t_corr3$P, digits = 3)
              tc_sex tc_age teacher_type empltim tc_emplst tc_tcexp tc_tedu
tc_sex            NA  0.002        0.000   0.224     0.821    0.009   0.986
tc_age         0.002     NA        0.000   0.000     0.000    0.000   0.761
teacher_type   0.000  0.000           NA   0.175     0.035    0.006   0.084
empltim        0.224  0.000        0.175      NA     0.000    0.049   0.922
tc_emplst      0.821  0.000        0.035   0.000        NA    0.005   0.388
tc_tcexp       0.009  0.000        0.006   0.049     0.005       NA   0.112
tc_tedu        0.986  0.761        0.084   0.922     0.388    0.112      NA
tc_initqual    0.004  0.353        0.019   0.984     0.348    0.000   0.000
tc_training    0.152  0.023          NaN   0.021     0.017    0.000   0.339
tc_workshop    0.007  0.193          NaN   0.000     0.000    0.027   0.625
tc_pd          0.057  0.034        0.817   0.000     0.000    0.008   0.730
reading_score  0.530  0.008        0.363   0.000     0.000    0.000   0.030
              tc_initqual tc_training tc_workshop tc_pd reading_score
tc_sex              0.004       0.152       0.007 0.057         0.530
tc_age              0.353       0.023       0.193 0.034         0.008
teacher_type        0.019         NaN         NaN 0.817         0.363
empltim             0.984       0.021       0.000 0.000         0.000
tc_emplst           0.348       0.017       0.000 0.000         0.000
tc_tcexp            0.000       0.000       0.027 0.008         0.000
tc_tedu             0.000       0.339       0.625 0.730         0.030
tc_initqual            NA       0.002       0.985 0.399         0.000
tc_training         0.002          NA       0.008 0.199         0.330
tc_workshop         0.985       0.008          NA 0.002         0.842
tc_pd               0.399       0.199       0.002    NA         0.013
reading_score       0.000       0.330       0.842 0.013            NA
# t_corr3$n
# ++++++++++++++++++++++++++++
# flattenCorrMatrix
# ++++++++++++++++++++++++++++
# cormat : matrix of the correlation coefficients
# pmat : matrix of the correlation p-values
# flattenCorrMatrix <- function(cormat, pmat) {
#  ut <- upper.tri(cormat)
#  data.frame(
#    row = rownames(cormat)[row(cormat)[ut]],
#   column = rownames(cormat)[col(cormat)[ut]],
#    cor  =(cormat)[ut],
#    p = pmat[ut]
#   )
# }
# flattenCorrMatrix(t_corr3$r, t_corr3$p)

vi. Creating a Copy of “teacher_data”, Running Missing Data Analysis, and Imputing Data Using the “MICE” Package

library(mice)
library(ggmice)

# summary(teacher_data)
# class(teacher_data)
lit_data <- teacher_data

# Patterns of Missing Data Variable-wise
plot_pattern(lit_data)

# Or
VIM::aggr(lit_data, col = c("dodgerblue", "maroon"), numbers = TRUE, sortVars = TRUE, labels = names(lit_data), cex.axis = .7, gap = 3, ylab = c("Histogram of missing data", "Pattern"))


 Variables sorted by number of missings: 
      Variable     Count
   tc_training 0.5065230
   tc_workshop 0.4994328
      tc_tcexp 0.2101531
        tc_sex 0.2050482
         tc_pd 0.2047646
        tc_age 0.1985252
       tc_tedu 0.1979580
   tc_initqual 0.1973908
       empltim 0.1965400
     tc_emplst 0.1965400
  teacher_type 0.1885990
     school_id 0.0000000
    teacher_id 0.0000000
 reading_score 0.0000000
# MissMech::TestMCARNormality(data = teacher_data, alpha = 0.05)
# naniar package tests for the MCAR Normality
naniar::mcar_test(lit_data)
# A tibble: 1 × 4
  statistic    df p.value missing.patterns
      <dbl> <dbl>   <dbl>            <int>
1     3347.   293       0               29

Use Little’s (1988) test statistic to assess if data is missing completely at random (MCAR). The null hypothesis for this test is: the data is MCAR, and the test statistic is a chi-squared (2) value. The output shows the mcar_test of the lit_data. Given the high statistic value and low p-value, i.e., 2(293,=3526)=3347,=0, we can conclude the lit_data data is not missing completely at random.

h.vii. Imputing the Missing Data Using Multivariate Imputation by Chained Equations (MICE) Package

General Structure:(,=5,â„Ž=,,=,â„Ž=,,=,,=,=,â„Ž=(,,,),=5,=,=,.=,...)

Where,

  • m = number of desired imputed data (default =5)
  • seed = offsetting the random number generator
  • method = imputation method to be used for each column in data
  • predictorMatrix = data specifying the set of predictors to be used for each target column
  • ignore = A logical vector of nrow(data) elements indicating which rows are ignored when creating the imputation model. The default NULL includes all rows that have an observed value of the variable to imputed
  • where = A data frame or matrix with logicals of the same dimensions as data indicating where in the data the imputations should be created. The default, where = is.na(data), specifies that the missing data should be imputed.
  • maxit = the number of iterations. The default is 5.
  • printFlag = If TRUE, mice prints history on console
  • data.init = A data frame of the same size and type as data, without missing data, used to initialize imputations before the start of the iterative process.
imp_data <- mice::mice(lit_data, m = 5, maxit = 50, method = "pmm", seed = 0922, printFlag = FALSE)
summary(imp_data)
Class: mids
Number of multiple imputations:  5 
Imputation methods:
    school_id    teacher_id        tc_sex        tc_age  teacher_type 
           ""            ""         "pmm"         "pmm"         "pmm" 
      empltim     tc_emplst      tc_tcexp       tc_tedu   tc_initqual 
        "pmm"         "pmm"         "pmm"         "pmm"         "pmm" 
  tc_training   tc_workshop         tc_pd reading_score 
        "pmm"         "pmm"         "pmm"            "" 
PredictorMatrix:
             school_id teacher_id tc_sex tc_age teacher_type empltim tc_emplst
school_id            0          0      1      1            1       1         1
teacher_id           0          0      1      1            1       1         1
tc_sex               0          0      0      1            1       1         1
tc_age               0          0      1      0            1       1         1
teacher_type         0          0      1      1            0       1         1
empltim              0          0      1      1            1       0         1
             tc_tcexp tc_tedu tc_initqual tc_training tc_workshop tc_pd
school_id           1       1           1           1           1     1
teacher_id          1       1           1           1           1     1
tc_sex              1       1           1           1           1     1
tc_age              1       1           1           1           1     1
teacher_type        1       1           1           1           1     1
empltim             1       1           1           1           1     1
             reading_score
school_id                1
teacher_id               1
tc_sex                   1
tc_age                   1
teacher_type             1
empltim                  1
Number of logged events:  2247 
  it im      dep     meth        out
1  0  0          constant  school_id
2  0  0          constant teacher_id
3  1  1   tc_sex      pmm   empltim2
4  1  1   tc_age      pmm   empltim2
5  1  1 tc_tcexp      pmm   empltim2
6  1  1  tc_tedu      pmm   empltim2
# checking the imputation method

A new data set is created, i.e., imp_data and it has stored all five newly imputed data set. We can check the values simply by using imp$variable_name function in the {mice} package. There are 3526 rows, thus, I just want to show top 6 and bottom 6 values to same some space.

rbind(head(imp_data$imp$tc_training), tail(imp_data$imp$tc_training))
     1 2 3 4 5
6    1 2 2 2 2
7    1 2 1 2 1
13   2 2 2 2 2
15   2 2 2 2 2
19   2 1 2 2 2
20   1 2 2 2 2
3520 1 2 2 2 2
3521 2 2 2 2 2
3522 2 1 2 2 2
3523 2 2 2 1 1
3525 1 1 1 2 2
3526 2 2 2 2 2

I used the predicted mean matching (PMM) method to complete the multiple imputation in my data. It is one of the multivariate imputation methods for multiple imputation, in which the missing data are imputed conditional on all other variables [for further information: Austin, P. C.,White, I. R., Lee, D. S., & Buuren, S. (2021). Missing data in clinical research: A tutorial on multiple imputation. Canadian Journal of Cardiology, 37(9), 1322-1331. https://doi.org/10.1016/j.cjca.2020.11.010]. The predictive-mean matching imputation process randomly selects a value from a pool of closest values based on the fitted regression coefficients, conducted using the observed empirical distribution. The general recommendation is that identifying 10 closest values should perform well (Morris, White, & Royston, 2014). Checking, if the requested imputation method is really implemented.

imp_data$meth
    school_id    teacher_id        tc_sex        tc_age  teacher_type 
           ""            ""         "pmm"         "pmm"         "pmm" 
      empltim     tc_emplst      tc_tcexp       tc_tedu   tc_initqual 
        "pmm"         "pmm"         "pmm"         "pmm"         "pmm" 
  tc_training   tc_workshop         tc_pd reading_score 
        "pmm"         "pmm"         "pmm"            "" 

h.viii. Comparing Imputed Values with the Original Values Using Plots

It is essential to compare the imputed data with the original data set. There are many things we could do, but I would like to check how the distribution of variables compare (imputed vs. original) while predicting reading_scores using all variables.

# Original Mice Plot (blue = original data, red = imputed data)
densityplot(imp_data, ~tc_sex)

# GGmice Option
ggmice::plot_trace(imp_data, "tc_tcexp")

# GGmice Option 2
ggmice::ggmice(
  imp_data,
  ggplot2::aes(x = tc_workshop, y = reading_score)
) +
  ggplot2::geom_jitter(width = 0.25) +
  ggplot2::labs(x = "Teacher Workshop Status")

# GG Mice option 3
# ggmice::plot_flux(imp_data$tc_age)

Looking at the plots above, the imputed data seem to match with the original data and the original distribution patterns. The next task is to check the linear regression estimates using the pooled imputed data.

impute_lm <- with(imp_data, lm(reading_score ~ tc_sex + tc_age + teacher_type + empltim + tc_tcexp + tc_tedu + tc_initqual + tc_training + tc_workshop + tc_pd))
# Saving the statistics in a vector
individual_lm <- summary(impute_lm)
# Changing the vector to a data.frame and printing the output
data.frame(individual_lm)
            term     estimate std.error    statistic      p.value nobs
1    (Intercept) 511.90885857 4.3406695 117.93315743 0.000000e+00 3526
2        tc_sex2   2.08453457 1.7306907   1.20445243 2.284959e-01 3526
3         tc_age  -0.37613349 0.1142005  -3.29362502 9.988484e-04 3526
4  teacher_type5  -2.80749273 1.7220308  -1.63033831 1.031197e-01 3526
5       empltim2  32.29931951 5.9756111   5.40519099 6.905485e-08 3526
6       tc_tcexp   0.75608654 0.1379961   5.47904413 4.577232e-08 3526
7       tc_tedu2  -2.09500619 2.1547498  -0.97227352 3.309815e-01 3526
8       tc_tedu3 -12.72077831 3.5556947  -3.57757893 3.514742e-04 3526
9   tc_initqual2  -6.40761795 4.2536070  -1.50639631 1.320554e-01 3526
10  tc_initqual3  -2.14040770 3.0444017  -0.70306350 4.820628e-01 3526
11  tc_initqual4  -0.72309445 8.1976233  -0.08820782 9.297165e-01 3526
12  tc_initqual5   5.55895551 4.2313425   1.31375691 1.890139e-01 3526
13  tc_training2   1.83338002 1.9278483   0.95099808 3.416708e-01 3526
14  tc_workshop2  -4.09149985 3.3048286  -1.23803691 2.157852e-01 3526
15        tc_pd2   8.66980014 6.3688724   1.36127710 1.735135e-01 3526
16   (Intercept) 514.89379018 4.4201864 116.48689472 0.000000e+00 3526
17       tc_sex2   3.17516043 1.7485779   1.81585297 6.947819e-02 3526
18        tc_age  -0.44330092 0.1180818  -3.75418535 1.767225e-04 3526
19 teacher_type5  -1.69532989 1.7387403  -0.97503340 3.296109e-01 3526
20      empltim2  31.28540036 5.8108266   5.38398451 7.763567e-08 3526
21      tc_tcexp   0.80183953 0.1412179   5.67803122 1.473182e-08 3526
22      tc_tedu2  -1.81389918 2.1894399  -0.82847635 4.074571e-01 3526
23      tc_tedu3 -11.66316587 3.6147970  -3.22650642 1.264624e-03 3526
24  tc_initqual2  -4.22227672 4.4019825  -0.95917618 3.375360e-01 3526
25  tc_initqual3  -2.44219160 3.1308915  -0.78003074 4.354254e-01 3526
26  tc_initqual4  -2.74618000 8.2950914  -0.33106085 7.406183e-01 3526
27  tc_initqual5  -2.27118396 4.2522523  -0.53411317 5.932971e-01 3526
28  tc_training2  -1.05433291 1.8742520  -0.56253529 5.737873e-01 3526
29  tc_workshop2  -0.02593619 3.3177096  -0.00781750 9.937630e-01 3526
30        tc_pd2   8.65706297 6.3252586   1.36864965 1.711964e-01 3526
31   (Intercept) 510.76693745 4.3879418 116.40239669 0.000000e+00 3526
32       tc_sex2   3.55720955 1.7428283   2.04105561 4.131993e-02 3526
33        tc_age  -0.30515132 0.1178016  -2.59038327 9.626556e-03 3526
34 teacher_type5  -2.71490897 1.7394124  -1.56081964 1.186564e-01 3526
35      empltim2  26.82895259 5.9968094   4.47387116 7.925127e-06 3526
36      tc_tcexp   0.64971318 0.1406016   4.62095020 3.957176e-06 3526
37      tc_tedu2  -1.65550326 2.1531696  -0.76886803 4.420234e-01 3526
38      tc_tedu3 -13.10850548 3.6170790  -3.62405834 2.941271e-04 3526
39  tc_initqual2 -11.00395055 4.4099914  -2.49523174 1.263307e-02 3526
40  tc_initqual3  -4.97746026 3.0950802  -1.60818457 1.078847e-01 3526
41  tc_initqual4  -8.16596544 8.0702978  -1.01185429 3.116775e-01 3526
42  tc_initqual5   4.54703352 4.3065120   1.05585067 2.911091e-01 3526
43  tc_training2   0.66146186 1.9089991   0.34649668 7.289902e-01 3526
44  tc_workshop2  -0.90841135 3.3026833  -0.27505252 7.832921e-01 3526
45        tc_pd2   9.83807800 6.1367162   1.60315022 1.089914e-01 3526
46   (Intercept) 512.27121626 4.4491614 115.13882500 0.000000e+00 3526
47       tc_sex2   1.73967465 1.7426714   0.99828036 3.182122e-01 3526
48        tc_age  -0.35608005 0.1180540  -3.01624774 2.577582e-03 3526
49 teacher_type5  -1.41101371 1.7408511  -0.81053096 4.176900e-01 3526
50      empltim2  28.63788398 5.9136090   4.84270841 1.336104e-06 3526
51      tc_tcexp   0.80671212 0.1415576   5.69882572 1.305769e-08 3526
52      tc_tedu2  -1.99106737 2.1816628  -0.91263752 3.614959e-01 3526
53      tc_tedu3  -8.05202480 3.5765285  -2.25135203 2.442484e-02 3526
54  tc_initqual2 -10.18334214 4.4045564  -2.31200174 2.083518e-02 3526
55  tc_initqual3  -3.07394846 3.1169252  -0.98621183 3.240971e-01 3526
56  tc_initqual4  -9.22684503 8.7602841  -1.05325866 2.922949e-01 3526
57  tc_initqual5  -1.11919303 4.2635028  -0.26250552 7.929471e-01 3526
58  tc_training2  -1.19757269 1.9518245  -0.61356575 5.395421e-01 3526
59  tc_workshop2  -7.63274943 3.1759668  -2.40328375 1.630013e-02 3526
60        tc_pd2  13.61656887 6.2092629   2.19294450 2.837676e-02 3526
61   (Intercept) 512.21821972 4.4474926 115.17011229 0.000000e+00 3526
62       tc_sex2   2.40201028 1.7417580   1.37907237 1.679603e-01 3526
63        tc_age  -0.29579032 0.1159539  -2.55093030 1.078565e-02 3526
64 teacher_type5  -1.77156099 1.7344805  -1.02137846 3.071455e-01 3526
65      empltim2  31.84410927 5.7974957   5.49273534 4.238855e-08 3526
66      tc_tcexp   0.70113390 0.1392521   5.03499801 5.018951e-07 3526
67      tc_tedu2  -3.72343937 2.1742933  -1.71248253 8.689608e-02 3526
68      tc_tedu3 -13.82443024 3.6750950  -3.76165245 1.715486e-04 3526
69  tc_initqual2 -10.52442473 4.1514416  -2.53512529 1.128376e-02 3526
70  tc_initqual3  -3.58855440 3.1282773  -1.14713438 2.514043e-01 3526
71  tc_initqual4  -9.94930433 8.1830466  -1.21584354 2.241263e-01 3526
72  tc_initqual5   2.25413948 4.3995203   0.51236029 6.084311e-01 3526
73  tc_training2  -0.61834373 1.9514078  -0.31687058 7.513606e-01 3526
74  tc_workshop2  -7.18946375 3.4280260  -2.09726056 3.604186e-02 3526
75        tc_pd2   9.87447139 6.1155833   1.61464096 1.064783e-01 3526

The above output shows the linear regression estimates of all imputed data sets (1:5). There were 5-imputed data sets and each data had 15-rows of output. The reason of printing them is to compare them with the pooled statistics, and the original data statistics and finding the best to replace missing values in the original data set.

h.vix. Checking the Pooled Statistics Based on All of the Above Statistics

summary(pool(impute_lm))
            term     estimate std.error    statistic        df       p.value
1    (Intercept) 512.41180444 4.7111097 108.76668926 239.73637 5.055838e-206
2        tc_sex2   2.59171789 1.9286556   1.34379510 112.47803  1.817192e-01
3         tc_age  -0.35529122 0.1338633  -2.65413385  68.61951  9.873717e-03
4  teacher_type5  -2.08006126 1.8701686  -1.11223193 193.19485  2.674205e-01
5       empltim2  30.17913314 6.4366539   4.68863693 148.46050  6.177823e-06
6       tc_tcexp   0.74309705 0.1583701   4.69215351  82.34731  1.062729e-05
7       tc_tedu2  -2.25578307 2.3566180  -0.95721203 164.53298  3.398646e-01
8       tc_tedu3 -11.87378094 4.3848969  -2.70788144  37.74662  1.011717e-02
9   tc_initqual2  -8.46832242 5.4288808  -1.55986524  29.60041  1.294208e-01
10  tc_initqual3  -3.24451249 3.3368165  -0.97233769 204.45842  3.320315e-01
11  tc_initqual4  -6.16227785 9.4693994  -0.65075699  73.02423  5.172458e-01
12  tc_initqual5   1.79395030 5.7014477   0.31464821  21.05426  7.561257e-01
13  tc_training2  -0.07508149 2.3891200  -0.03142642  31.81691  9.751258e-01
14  tc_workshop2  -3.96961211 5.0549291  -0.78529531  12.12450  4.473548e-01
15        tc_pd2  10.13119627 6.6196468   1.53047385 281.39327  1.270229e-01

h.vxi. Replacing the Missing Values and Running the Same Regression to Compare Values and Running the Same Regression

complete_data_1 <- complete(imp_data, 1)
complete_data_2 <- complete(imp_data, 2)
complete_data_3 <- complete(imp_data, 3)
complete_data_4 <- complete(imp_data, 4)
complete_data_5 <- complete(imp_data, 5)
# write.csv(complete_data_1, "imputed_teacher_data.csv", row.names = FALSE)
h.vxi.a. Based on Complete Data 1
# First Complete Dataset
complete_lm_1 <- with(complete_data_1, lm(reading_score ~ tc_sex + tc_age + teacher_type + empltim + tc_tcexp + tc_tedu + tc_initqual + tc_training + tc_workshop + tc_pd))
summary(complete_lm_1)

Call:
lm(formula = reading_score ~ tc_sex + tc_age + teacher_type + 
    empltim + tc_tcexp + tc_tedu + tc_initqual + tc_training + 
    tc_workshop + tc_pd)

Residuals:
     Min       1Q   Median       3Q      Max 
-257.176  -34.577   -0.439   32.648  113.452 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept)   511.9089     4.3407 117.933  < 2e-16 ***
tc_sex2         2.0845     1.7307   1.204 0.228496    
tc_age         -0.3761     0.1142  -3.294 0.000999 ***
teacher_type5  -2.8075     1.7220  -1.630 0.103120    
empltim2       32.2993     5.9756   5.405 6.91e-08 ***
tc_tcexp        0.7561     0.1380   5.479 4.58e-08 ***
tc_tedu2       -2.0950     2.1547  -0.972 0.330981    
tc_tedu3      -12.7208     3.5557  -3.578 0.000351 ***
tc_initqual2   -6.4076     4.2536  -1.506 0.132055    
tc_initqual3   -2.1404     3.0444  -0.703 0.482063    
tc_initqual4   -0.7231     8.1976  -0.088 0.929717    
tc_initqual5    5.5590     4.2313   1.314 0.189014    
tc_training2    1.8334     1.9278   0.951 0.341671    
tc_workshop2   -4.0915     3.3048  -1.238 0.215785    
tc_pd2          8.6698     6.3689   1.361 0.173513    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 48.51 on 3511 degrees of freedom
Multiple R-squared:  0.02575,   Adjusted R-squared:  0.02186 
F-statistic: 6.628 on 14 and 3511 DF,  p-value: 1.776e-13
h.vxi.b. Based on Complete Data 2
# Second Complete Dataset
complete_lm_2 <- with(complete_data_2, lm(reading_score ~ tc_sex + tc_age + teacher_type + empltim + tc_tcexp + tc_tedu + tc_initqual + tc_training + tc_workshop + tc_pd))
summary(complete_lm_2)

Call:
lm(formula = reading_score ~ tc_sex + tc_age + teacher_type + 
    empltim + tc_tcexp + tc_tedu + tc_initqual + tc_training + 
    tc_workshop + tc_pd)

Residuals:
     Min       1Q   Median       3Q      Max 
-256.072  -35.040   -1.115   32.738  116.559 

Coefficients:
               Estimate Std. Error t value Pr(>|t|)    
(Intercept)   514.89379    4.42019 116.487  < 2e-16 ***
tc_sex2         3.17516    1.74858   1.816 0.069478 .  
tc_age         -0.44330    0.11808  -3.754 0.000177 ***
teacher_type5  -1.69533    1.73874  -0.975 0.329611    
empltim2       31.28540    5.81083   5.384 7.76e-08 ***
tc_tcexp        0.80184    0.14122   5.678 1.47e-08 ***
tc_tedu2       -1.81390    2.18944  -0.828 0.407457    
tc_tedu3      -11.66317    3.61480  -3.227 0.001265 ** 
tc_initqual2   -4.22228    4.40198  -0.959 0.337536    
tc_initqual3   -2.44219    3.13089  -0.780 0.435425    
tc_initqual4   -2.74618    8.29509  -0.331 0.740618    
tc_initqual5   -2.27118    4.25225  -0.534 0.593297    
tc_training2   -1.05433    1.87425  -0.563 0.573787    
tc_workshop2   -0.02594    3.31771  -0.008 0.993763    
tc_pd2          8.65706    6.32526   1.369 0.171196    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 48.5 on 3511 degrees of freedom
Multiple R-squared:  0.02641,   Adjusted R-squared:  0.02253 
F-statistic: 6.803 on 14 and 3511 DF,  p-value: 6.236e-14
h.vxi.c. Based on Complete Data 3
# Third Complete Dataset
complete_lm_3 <- with(complete_data_3, lm(reading_score ~ tc_sex + tc_age + teacher_type + empltim + tc_tcexp + tc_tedu + tc_initqual + tc_training + tc_workshop + tc_pd))
summary(complete_lm_3)

Call:
lm(formula = reading_score ~ tc_sex + tc_age + teacher_type + 
    empltim + tc_tcexp + tc_tedu + tc_initqual + tc_training + 
    tc_workshop + tc_pd)

Residuals:
    Min      1Q  Median      3Q     Max 
-258.11  -34.89   -0.86   33.15  116.40 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept)   510.7669     4.3879 116.402  < 2e-16 ***
tc_sex2         3.5572     1.7428   2.041 0.041320 *  
tc_age         -0.3052     0.1178  -2.590 0.009627 ** 
teacher_type5  -2.7149     1.7394  -1.561 0.118656    
empltim2       26.8290     5.9968   4.474 7.93e-06 ***
tc_tcexp        0.6497     0.1406   4.621 3.96e-06 ***
tc_tedu2       -1.6555     2.1532  -0.769 0.442023    
tc_tedu3      -13.1085     3.6171  -3.624 0.000294 ***
tc_initqual2  -11.0040     4.4100  -2.495 0.012633 *  
tc_initqual3   -4.9775     3.0951  -1.608 0.107885    
tc_initqual4   -8.1660     8.0703  -1.012 0.311677    
tc_initqual5    4.5470     4.3065   1.056 0.291109    
tc_training2    0.6615     1.9090   0.346 0.728990    
tc_workshop2   -0.9084     3.3027  -0.275 0.783292    
tc_pd2          9.8381     6.1367   1.603 0.108991    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 48.52 on 3511 degrees of freedom
Multiple R-squared:  0.02556,   Adjusted R-squared:  0.02168 
F-statistic: 6.579 on 14 and 3511 DF,  p-value: 2.377e-13
h.vxi.d. Based on Complete Data 4
# Fourth Complete Dataset
complete_lm_4 <- with(complete_data_4, lm(reading_score ~ tc_sex + tc_age + teacher_type + empltim + tc_tcexp + tc_tedu + tc_initqual + tc_training + tc_workshop + tc_pd))
summary(complete_lm_4)

Call:
lm(formula = reading_score ~ tc_sex + tc_age + teacher_type + 
    empltim + tc_tcexp + tc_tedu + tc_initqual + tc_training + 
    tc_workshop + tc_pd)

Residuals:
     Min       1Q   Median       3Q      Max 
-257.939  -34.470   -0.812   32.666  116.960 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept)   512.2712     4.4492 115.139  < 2e-16 ***
tc_sex2         1.7397     1.7427   0.998  0.31821    
tc_age         -0.3561     0.1181  -3.016  0.00258 ** 
teacher_type5  -1.4110     1.7409  -0.811  0.41769    
empltim2       28.6379     5.9136   4.843 1.34e-06 ***
tc_tcexp        0.8067     0.1416   5.699 1.31e-08 ***
tc_tedu2       -1.9911     2.1817  -0.913  0.36150    
tc_tedu3       -8.0520     3.5765  -2.251  0.02442 *  
tc_initqual2  -10.1833     4.4046  -2.312  0.02084 *  
tc_initqual3   -3.0739     3.1169  -0.986  0.32410    
tc_initqual4   -9.2268     8.7603  -1.053  0.29229    
tc_initqual5   -1.1192     4.2635  -0.263  0.79295    
tc_training2   -1.1976     1.9518  -0.614  0.53954    
tc_workshop2   -7.6327     3.1760  -2.403  0.01630 *  
tc_pd2         13.6166     6.2093   2.193  0.02838 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 48.5 on 3511 degrees of freedom
Multiple R-squared:  0.02618,   Adjusted R-squared:  0.0223 
F-statistic: 6.743 on 14 and 3511 DF,  p-value: 8.963e-14
h.vxi.e. Based on Complete Data 5
# Fifth Complete Dataset
complete_lm_5 <- with(complete_data_5, lm(reading_score ~ tc_sex + tc_age + teacher_type + empltim + tc_tcexp + tc_tedu + tc_initqual + tc_training + tc_workshop + tc_pd))
summary(complete_lm_5)

Call:
lm(formula = reading_score ~ tc_sex + tc_age + teacher_type + 
    empltim + tc_tcexp + tc_tedu + tc_initqual + tc_training + 
    tc_workshop + tc_pd)

Residuals:
     Min       1Q   Median       3Q      Max 
-256.429  -34.919   -0.523   33.261  115.690 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept)   512.2182     4.4475 115.170  < 2e-16 ***
tc_sex2         2.4020     1.7418   1.379 0.167960    
tc_age         -0.2958     0.1160  -2.551 0.010786 *  
teacher_type5  -1.7716     1.7345  -1.021 0.307146    
empltim2       31.8441     5.7975   5.493 4.24e-08 ***
tc_tcexp        0.7011     0.1393   5.035 5.02e-07 ***
tc_tedu2       -3.7234     2.1743  -1.712 0.086896 .  
tc_tedu3      -13.8244     3.6751  -3.762 0.000172 ***
tc_initqual2  -10.5244     4.1514  -2.535 0.011284 *  
tc_initqual3   -3.5886     3.1283  -1.147 0.251404    
tc_initqual4   -9.9493     8.1830  -1.216 0.224126    
tc_initqual5    2.2541     4.3995   0.512 0.608431    
tc_training2   -0.6183     1.9514  -0.317 0.751361    
tc_workshop2   -7.1895     3.4280  -2.097 0.036042 *  
tc_pd2          9.8745     6.1156   1.615 0.106478    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 48.45 on 3511 degrees of freedom
Multiple R-squared:  0.02833,   Adjusted R-squared:  0.02446 
F-statistic: 7.313 on 14 and 3511 DF,  p-value: 2.936e-15

Observation Based on Above Outputs:

  1. The model fit statistics are pretty much identical in all of the models.
    • SE ~ 48.5
    • DF ~ (14 - 3511)
    • F ~ (6.28 - 7.31)
    • R-Squared ~ (0.025 - 0.028)
    • Adjusted R-Squared ~ (0.021 - 0.022)
  2. Comparison with the Pooled Model, which shows that four variables (e.g., teacher age, employment type, teacher experience, and teacher education) including intercept were statistically predicting students’ reading scores:
    • Complete Data 1 : Same variables are statistically significant but their level of significance are more severe; the  estimates are comparable
    • Complete Data 2 : All four variables are statistically significant at somewhat similar level. However, teachers’ sex seem to be almost statistically significant unlike the pooled and the complete data 1 models.
    • Complete Data 3 : The teachers’ sex is statistically significant at 5% level, plus teachers’ initial certification type 2 has been added into the statistically significant column.
    • Complete Data 4 : More extreme departure from previous models, all variables in the pooled model are statistically significant but somewhat similar different levels. Teachers’ sex is no longer statistically significant. However, teacher certification type 2, including teacher workshop and professional development opportunities are statistically significant at 5% level.
    • Complete Data 5 : It looks like a little improvement over 4th model. Teacher Education type two is almost statistically significant, the professional development has is not significant anymore.

i. Error Message and Checking for Correction

summary(teacher_data)
  school_id          teacher_id         tc_sex         tc_age      teacher_type
 Length:3526        Length:3526        1   :1784   Min.   :20.00   4   :1049   
 Class :character   Class :character   2   :1019   1st Qu.:34.00   5   :1812   
 Mode  :character   Mode  :character   NA's: 723   Median :42.00   NA's: 665   
                                                   Mean   :42.87               
                                                   3rd Qu.:51.00               
                                                   Max.   :70.00               
                                                   NA's   :700                 
 empltim     tc_emplst      tc_tcexp     tc_tedu     tc_initqual tc_training
 1   :2773   1   :2773   Min.   : 0.00   1   : 577   1   :2303   1   : 429  
 2   :  60   2   :  22   1st Qu.: 7.00   2   :2022   2   : 113   2   :1311  
 NA's: 693   3   :  21   Median :14.00   3   : 229   3   : 241   NA's:1786  
             4   :  17   Mean   :14.95   NA's: 698   4   :  31              
             NA's: 693   3rd Qu.:21.00               5   : 142              
                         Max.   :50.00               NA's: 696              
                         NA's   :741                                        
 tc_workshop  tc_pd      reading_score  
 1   :1637   1   :2753   Min.   :260.3  
 2   : 128   2   :  51   1st Qu.:468.2  
 NA's:1761   NA's: 722   Median :502.7  
                         Mean   :505.1  
                         3rd Qu.:537.1  
                         Max.   :608.0  
                                        
table(teacher_data$teacher_type, teacher_data$empltim)
   
       1    2
  4 1022   17
  5 1751   43
table(teacher_data$teacher_type, teacher_data$tc_tedu)
   
       1    2    3
  4  216  759   65
  5  361 1263  164
table(teacher_data$empltim, teacher_data$tc_tedu)
   
       1    2    3
  1  562 1983  221
  2   15   37    8
table(teacher_data$teacher_type, teacher_data$empltim, teacher_data$tc_tedu)
, ,  = 1

   
       1    2
  4  212    4
  5  350   11

, ,  = 2

   
       1    2
  4  745   13
  5 1238   24

, ,  = 3

   
       1    2
  4   65    0
  5  156    8

Because the model below did not converge, the Lavaan error report suggested that one of the combinations had the total Zero values. The above outcomes show cross tab between/among variables in an attempt to find out the troubling variable.

Structural Modeling

lat_mod <- "
# Measurement Model
demography =~ tc_sex + tc_age
education =~ tc_tedu + tc_initqual
training =~ tc_training + tc_workshop + tc_pd
# Regression Model
reading_score ~ demography + education + training
education ~ demography + training
training ~ demography
"

tech_model <- sem(lat_mod,
  data = teacher_data,
  ordered = c("tc_sex", "tc_tedu", "tc_initqual", "tc_training", "tc_workshop", "tc_pd")
)
summary(tech_model, standardized = TRUE, rsquare = TRUE, fit.measures = TRUE, modindices = TRUE)
lavaan 0.6.14 ended normally after 625 iterations

  Estimator                                       DWLS
  Optimization method                           NLMINB
  Number of model parameters                        27

                                                  Used       Total
  Number of observations                          1709        3526

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                                22.441      23.614
  Degrees of freedom                                15          15
  P-value (Chi-square)                           0.097       0.072
  Scaling correction factor                                  0.976
  Shift parameter                                            0.627
    simple second-order correction                                

Model Test Baseline Model:

  Test statistic                               112.688     105.734
  Degrees of freedom                                28          28
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.089

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.912       0.889
  Tucker-Lewis Index (TLI)                       0.836       0.793
                                                                  
  Robust Comparative Fit Index (CFI)                            NA
  Robust Tucker-Lewis Index (TLI)                               NA

Root Mean Square Error of Approximation:

  RMSEA                                          0.017       0.018
  90 Percent confidence interval - lower         0.000       0.000
  90 Percent confidence interval - upper         0.031       0.032
  P-value H_0: RMSEA <= 0.050                    1.000       1.000
  P-value H_0: RMSEA >= 0.080                    0.000       0.000
                                                                  
  Robust RMSEA                                                  NA
  90 Percent confidence interval - lower                        NA
  90 Percent confidence interval - upper                        NA
  P-value H_0: Robust RMSEA <= 0.050                            NA
  P-value H_0: Robust RMSEA >= 0.080                            NA

Standardized Root Mean Square Residual:

  SRMR                                           0.039       0.039

Parameter Estimates:

  Standard errors                           Robust.sem
  Information                                 Expected
  Information saturated (h1) model        Unstructured

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  demography =~                                                         
    tc_sex            1.000                               0.198    0.198
    tc_age           22.359   12.966    1.724    0.085    4.428    0.393
  education =~                                                          
    tc_tedu           1.000                               0.160    0.160
    tc_initqual       3.211    2.072    1.550    0.121    0.513    0.513
  training =~                                                           
    tc_training       1.000                               0.276    0.276
    tc_workshop       1.251    0.522    2.393    0.017    0.345    0.345
    tc_pd             2.641    0.875    3.019    0.003    0.729    0.729

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  reading_score ~                                                       
    demography       84.407  132.183    0.639    0.523   16.717    0.353
    education      -111.557  120.322   -0.927    0.354  -17.823   -0.376
    training        -55.526  123.695   -0.449    0.654  -15.330   -0.324
  education ~                                                           
    demography        0.473    0.561    0.844    0.399    0.587    0.587
    training         -0.519    0.507   -1.024    0.306   -0.897   -0.897
  training ~                                                            
    demography        0.938    0.467    2.009    0.045    0.673    0.673

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .tc_sex            0.000                               0.000    0.000
   .tc_age           43.504    0.275  157.919    0.000   43.504    3.856
   .tc_tedu           0.000                               0.000    0.000
   .tc_initqual       0.000                               0.000    0.000
   .tc_training       0.000                               0.000    0.000
   .tc_workshop       0.000                               0.000    0.000
   .tc_pd             0.000                               0.000    0.000
   .reading_score   505.190    1.171  431.485    0.000  505.190   10.661
    demography        0.000                               0.000    0.000
   .education         0.000                               0.000    0.000
   .training          0.000                               0.000    0.000

Thresholds:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
    tc_sex|t1         0.166    0.030    5.439    0.000    0.166    0.166
    tc_tedu|t1       -0.839    0.035  -24.291    0.000   -0.839   -0.839
    tc_tedu|t2        1.351    0.043   31.510    0.000    1.351    1.351
    tc_initqual|t1    0.852    0.035   24.557    0.000    0.852    0.852
    tc_initqual|t2    1.035    0.037   27.943    0.000    1.035    1.035
    tc_initqual|t3    1.510    0.047   32.176    0.000    1.510    1.510
    tc_initqual|t4    1.631    0.051   32.193    0.000    1.631    1.631
    tc_training|t1   -0.699    0.033  -21.070    0.000   -0.699   -0.699
    tc_workshop|t1    1.449    0.045   32.008    0.000    1.449    1.449
    tc_pd|t1          2.081    0.072   29.045    0.000    2.081    2.081

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .tc_sex            0.961                               0.961    0.961
   .tc_age          107.675   14.021    7.680    0.000  107.675    0.846
   .tc_tedu           0.974                               0.974    0.974
   .tc_initqual       0.737                               0.737    0.737
   .tc_training       0.924                               0.924    0.924
   .tc_workshop       0.881                               0.881    0.881
   .tc_pd             0.468                               0.468    0.468
   .reading_score  2022.595  302.966    6.676    0.000 2022.595    0.901
    demography        0.039    0.028    1.386    0.166    1.000    1.000
   .education         0.014    0.013    1.086    0.278    0.560    0.560
   .training          0.042    0.032    1.294    0.196    0.547    0.547

Scales y*:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
    tc_sex            1.000                               1.000    1.000
    tc_tedu           1.000                               1.000    1.000
    tc_initqual       1.000                               1.000    1.000
    tc_training       1.000                               1.000    1.000
    tc_workshop       1.000                               1.000    1.000
    tc_pd             1.000                               1.000    1.000

R-Square:
                   Estimate
    tc_sex            0.039
    tc_age            0.154
    tc_tedu           0.026
    tc_initqual       0.263
    tc_training       0.076
    tc_workshop       0.119
    tc_pd             0.532
    reading_score     0.099
    education         0.440
    training          0.453

Modification Indices:

           lhs op         rhs    mi    epc sepc.lv sepc.all sepc.nox
1   demography =~     tc_tedu 0.820  0.317   0.063    0.063    0.063
2   demography =~ tc_initqual 0.820 -1.018  -0.202   -0.202   -0.202
3   demography =~ tc_training 1.398 -0.915  -0.181   -0.181   -0.181
4   demography =~ tc_workshop 0.255  0.494   0.098    0.098    0.098
5   demography =~       tc_pd 0.379  1.134   0.225    0.225    0.225
6    education =~      tc_sex 3.308  0.917   0.147    0.147    0.147
7    education =~ tc_training 1.191 -0.730  -0.117   -0.117   -0.117
8    education =~ tc_workshop 1.254  0.930   0.149    0.149    0.149
9    education =~       tc_pd 0.001 -0.050  -0.008   -0.008   -0.008
10    training =~      tc_sex 2.419 -0.864  -0.239   -0.239   -0.239
11    training =~     tc_tedu 1.609  0.391   0.108    0.108    0.108
12    training =~ tc_initqual 1.609 -1.256  -0.347   -0.347   -0.347
13      tc_sex ~~     tc_tedu 0.008 -0.003  -0.003   -0.003   -0.003
14      tc_sex ~~ tc_initqual 3.844  0.087   0.087    0.103    0.103
15      tc_sex ~~ tc_training 6.453 -0.124  -0.124   -0.132   -0.132
16      tc_sex ~~ tc_workshop 5.557  0.151   0.151    0.164    0.164
17      tc_sex ~~       tc_pd 0.245  0.056   0.056    0.084    0.084
18      tc_age ~~     tc_tedu 0.516  0.238   0.238    0.023    0.023
19      tc_age ~~ tc_initqual 3.883 -1.481  -1.481   -0.166   -0.166
20      tc_age ~~ tc_training 0.033  0.099   0.099    0.010    0.010
21      tc_age ~~ tc_workshop 0.792 -0.609  -0.609   -0.062   -0.062
22      tc_age ~~       tc_pd 0.252  0.639   0.639    0.090    0.090
23     tc_tedu ~~ tc_training 3.029  0.073   0.073    0.076    0.076
24     tc_tedu ~~ tc_workshop 0.022 -0.008  -0.008   -0.009   -0.009
25     tc_tedu ~~       tc_pd 0.020  0.016   0.016    0.023    0.023
26 tc_initqual ~~ tc_training 3.279 -0.104  -0.104   -0.126   -0.126
27 tc_initqual ~~ tc_workshop 1.463  0.088   0.088    0.109    0.109
28 tc_initqual ~~       tc_pd 0.014 -0.016  -0.016   -0.028   -0.028
29 tc_training ~~ tc_workshop 1.982  0.110   0.110    0.122    0.122
30 tc_training ~~       tc_pd 1.174 -0.163  -0.163   -0.248   -0.248
31 tc_workshop ~~       tc_pd 0.037 -0.035  -0.035   -0.054   -0.054
lavaanPlot(model = tech_model, coefs = TRUE, sig = .05, stand = TRUE, stars = "latent")
reading_scoretc_sextc_agetc_tedutc_initqualtc_trainingtc_workshoptc_pddemography0.2***educationtraining0.670.16***0.28***0.35*0.73**

Same Model Using the Complete Data 5

lat_mod_2 <- "
# Measurement Model
demography =~ tc_sex + tc_age
education =~ tc_tedu + tc_initqual
training =~ tc_training + tc_workshop + tc_pd
type =~ teacher_type + empltim
# Regression Model
reading_score ~ demography + education + training + type
education ~ demography + training + type
training ~ demography + type
demography ~ type
## Correlation
#tc_initqual ~~ tc_training
#tc_pd ~~  teacher_type
#tc_workshop ~~ empltim
"

tech_model_2 <- sem(lat_mod_2,
  data = complete_data_5,
  ordered = c("tc_sex", "tc_tedu", "tc_initqual", "tc_training", "tc_workshop", "tc_pd", "teacher_type", "empltim", "tc_tedu")
)
summary(tech_model_2, standardized = TRUE, rsquare = TRUE, fit.measures = TRUE, modindices = TRUE)
lavaan 0.6.14 ended normally after 467 iterations

  Estimator                                       DWLS
  Optimization method                           NLMINB
  Number of model parameters                        35

  Number of observations                          3526

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               180.119     192.769
  Degrees of freedom                                26          26
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  0.940
  Shift parameter                                            1.078
    simple second-order correction                                

Model Test Baseline Model:

  Test statistic                               490.942     452.505
  Degrees of freedom                                45          45
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.094

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.654       0.591
  Tucker-Lewis Index (TLI)                       0.402       0.292
                                                                  
  Robust Comparative Fit Index (CFI)                            NA
  Robust Tucker-Lewis Index (TLI)                               NA

Root Mean Square Error of Approximation:

  RMSEA                                          0.041       0.043
  90 Percent confidence interval - lower         0.035       0.037
  90 Percent confidence interval - upper         0.047       0.048
  P-value H_0: RMSEA <= 0.050                    0.995       0.983
  P-value H_0: RMSEA >= 0.080                    0.000       0.000
                                                                  
  Robust RMSEA                                                  NA
  90 Percent confidence interval - lower                        NA
  90 Percent confidence interval - upper                        NA
  P-value H_0: Robust RMSEA <= 0.050                            NA
  P-value H_0: Robust RMSEA >= 0.080                            NA

Standardized Root Mean Square Residual:

  SRMR                                           0.092       0.092

Parameter Estimates:

  Standard errors                           Robust.sem
  Information                                 Expected
  Information saturated (h1) model        Unstructured

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  demography =~                                                         
    tc_sex            1.000                               0.412    0.412
    tc_age            5.534    0.947    5.844    0.000    2.279    0.202
  education =~                                                          
    tc_tedu           1.000                               0.180    0.180
    tc_initqual       2.012    0.810    2.485    0.013    0.363    0.363
  training =~                                                           
    tc_training       1.000                               0.043    0.043
    tc_workshop      12.796   15.448    0.828    0.408    0.549    0.549
    tc_pd            15.965   19.260    0.829    0.407    0.684    0.684
  type =~                                                               
    teacher_type      1.000                               0.318    0.318
    empltim           1.075    0.221    4.857    0.000    0.342    0.342

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  reading_score ~                                                       
    demography       16.740   10.938    1.530    0.126    6.895    0.141
    education       -72.104   26.703   -2.700    0.007  -13.007   -0.265
    training          5.614  137.491    0.041    0.967    0.241    0.005
    type              1.308    9.950    0.131    0.895    0.416    0.008
  education ~                                                           
    demography        0.182    0.114    1.592    0.111    0.416    0.416
    training         -0.454    1.552   -0.293    0.770   -0.108   -0.108
    type             -0.047    0.115   -0.413    0.679   -0.084   -0.084
  training ~                                                            
    demography        0.044    0.054    0.806    0.420    0.422    0.422
    type              0.017    0.029    0.583    0.560    0.126    0.126
  demography ~                                                          
    type              2.343    1.335    1.756    0.079    1.809    1.809

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .tc_sex            0.000                               0.000    0.000
   .tc_age           42.918    0.193  222.279    0.000   42.918    3.809
   .tc_tedu           0.000                               0.000    0.000
   .tc_initqual       0.000                               0.000    0.000
   .tc_training       0.000                               0.000    0.000
   .tc_workshop       0.000                               0.000    0.000
   .tc_pd             0.000                               0.000    0.000
   .teacher_type      0.000                               0.000    0.000
   .empltim           0.000                               0.000    0.000
   .reading_score   505.100    0.848  595.959    0.000  505.100   10.299
   .demography        0.000                               0.000    0.000
   .education         0.000                               0.000    0.000
   .training          0.000                               0.000    0.000
    type              0.000                               0.000    0.000

Thresholds:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
    tc_sex|t1         0.351    0.022   16.265    0.000    0.351    0.351
    tc_tedu|t1       -0.827    0.024  -34.515    0.000   -0.827   -0.827
    tc_tedu|t2        1.411    0.031   45.755    0.000    1.411    1.411
    tc_initqual|t1    0.886    0.024   36.296    0.000    0.886    0.886
    tc_initqual|t2    1.066    0.026   40.837    0.000    1.066    1.066
    tc_initqual|t3    1.561    0.034   46.307    0.000    1.561    1.561
    tc_initqual|t4    1.657    0.036   46.178    0.000    1.657    1.657
    tc_training|t1   -0.734    0.023  -31.492    0.000   -0.734   -0.734
    tc_workshop|t1    1.530    0.033   46.270    0.000    1.530    1.530
    tc_pd|t1          2.081    0.050   41.724    0.000    2.081    2.081
    teacher_typ|t1   -0.348    0.022  -16.132    0.000   -0.348   -0.348
    empltim|t1        2.034    0.048   42.486    0.000    2.034    2.034

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .tc_sex            0.830                               0.830    0.830
   .tc_age          121.730    4.048   30.072    0.000  121.730    0.959
   .tc_tedu           0.967                               0.967    0.967
   .tc_initqual       0.868                               0.868    0.868
   .tc_training       0.998                               0.998    0.998
   .tc_workshop       0.699                               0.699    0.699
   .tc_pd             0.532                               0.532    0.532
   .teacher_type      0.899                               0.899    0.899
   .empltim           0.883                               0.883    0.883
   .reading_score  2217.227  104.899   21.137    0.000 2217.227    0.922
   .demography       -0.385    0.323   -1.194    0.232   -2.272   -2.272
   .education         0.032    0.016    2.010    0.044    0.976    0.976
   .training          0.001    0.003    0.418    0.676    0.614    0.614
    type              0.101    0.058    1.756    0.079    1.000    1.000

Scales y*:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
    tc_sex            1.000                               1.000    1.000
    tc_tedu           1.000                               1.000    1.000
    tc_initqual       1.000                               1.000    1.000
    tc_training       1.000                               1.000    1.000
    tc_workshop       1.000                               1.000    1.000
    tc_pd             1.000                               1.000    1.000
    teacher_type      1.000                               1.000    1.000
    empltim           1.000                               1.000    1.000

R-Square:
                   Estimate
    tc_sex            0.170
    tc_age            0.041
    tc_tedu           0.033
    tc_initqual       0.132
    tc_training       0.002
    tc_workshop       0.301
    tc_pd             0.468
    teacher_type      0.101
    empltim           0.117
    reading_score     0.078
    demography           NA
    education         0.024
    training          0.386

Modification Indices:

           lhs op          rhs     mi     epc sepc.lv sepc.all sepc.nox
1   demography =~      tc_tedu  0.841  -0.082  -0.034   -0.034   -0.034
2   demography =~  tc_initqual  0.842   0.166   0.068    0.068    0.068
3   demography =~  tc_training  8.755  -0.578  -0.238   -0.238   -0.238
4   demography =~  tc_workshop  4.185   2.311   0.952    0.952    0.952
5   demography =~        tc_pd  0.481  -0.956  -0.394   -0.394   -0.394
6   demography =~ teacher_type 60.451 -10.096  -4.158   -4.158   -4.158
7   demography =~      empltim 60.442  10.849   4.468    4.468    4.468
8    education =~       tc_sex  5.201   1.322   0.239    0.239    0.239
9    education =~       tc_age  5.196  -7.314  -1.319   -0.117   -0.117
10   education =~  tc_training 11.217  -1.076  -0.194   -0.194   -0.194
11   education =~  tc_workshop  6.008   1.527   0.275    0.275    0.275
12   education =~        tc_pd  3.792  -1.516  -0.274   -0.274   -0.274
13   education =~ teacher_type 13.524   2.489   0.449    0.449    0.449
14   education =~      empltim 13.523  -2.675  -0.483   -0.483   -0.483
15    training =~       tc_sex  0.003  -0.219  -0.009   -0.009   -0.009
16    training =~      tc_tedu  0.565  -0.789  -0.034   -0.034   -0.034
17    training =~  tc_initqual  0.364   1.273   0.055    0.055    0.055
18    training =~ teacher_type 53.833 -28.330  -1.214   -1.214   -1.214
19    training =~      empltim 53.978  30.487   1.307    1.307    1.307
20        type =~       tc_sex  0.659   0.448   0.142    0.142    0.142
21        type =~       tc_age  0.660  -2.480  -0.788   -0.070   -0.070
22        type =~      tc_tedu  1.655  -0.118  -0.037   -0.037   -0.037
23        type =~  tc_initqual  1.656   0.237   0.075    0.075    0.075
24        type =~  tc_training 12.360  -0.622  -0.198   -0.198   -0.198
25        type =~  tc_workshop  0.599   0.358   0.114    0.114    0.114
26        type =~        tc_pd  0.003  -0.031  -0.010   -0.010   -0.010
27      tc_sex ~~      tc_tedu  1.798  -0.038  -0.038   -0.043   -0.043
28      tc_sex ~~  tc_initqual  7.647   0.123   0.123    0.145    0.145
29      tc_sex ~~  tc_training 15.348  -0.128  -0.128   -0.141   -0.141
30      tc_sex ~~  tc_workshop  1.442   0.075   0.075    0.098    0.098
31      tc_sex ~~        tc_pd  0.285  -0.045  -0.045   -0.068   -0.068
32      tc_sex ~~ teacher_type 48.373   0.482   0.482    0.558    0.558
33      tc_sex ~~      empltim 71.019  -0.768  -0.768   -0.896   -0.896
34      tc_age ~~      tc_tedu  0.142  -0.089  -0.089   -0.008   -0.008
35      tc_age ~~  tc_initqual  2.827  -0.501  -0.501   -0.049   -0.049
36      tc_age ~~  tc_training  5.465   0.631   0.631    0.057    0.057
37      tc_age ~~  tc_workshop  0.843  -0.383  -0.383   -0.042   -0.042
38      tc_age ~~        tc_pd  0.497   0.397   0.397    0.049    0.049
39      tc_age ~~ teacher_type  0.661  -0.355  -0.355   -0.034   -0.034
40      tc_age ~~      empltim  0.797   0.542   0.542    0.052    0.052
41     tc_tedu ~~  tc_training  0.001   0.001   0.001    0.001    0.001
42     tc_tedu ~~  tc_workshop  0.282  -0.020  -0.020   -0.024   -0.024
43     tc_tedu ~~        tc_pd  0.424   0.040   0.040    0.055    0.055
44     tc_tedu ~~ teacher_type  0.065  -0.008  -0.008   -0.009   -0.009
45     tc_tedu ~~      empltim  0.190   0.022   0.022    0.024    0.024
46 tc_initqual ~~  tc_training 18.435  -0.137  -0.137   -0.147   -0.147
47 tc_initqual ~~  tc_workshop  1.868   0.075   0.075    0.096    0.096
48 tc_initqual ~~        tc_pd  1.241  -0.082  -0.082   -0.120   -0.120
49 tc_initqual ~~ teacher_type  0.000  -0.001  -0.001   -0.001   -0.001
50 tc_initqual ~~      empltim  0.001   0.002   0.002    0.003    0.003
51 tc_training ~~  tc_workshop  1.675   0.073   0.073    0.087    0.087
52 tc_training ~~        tc_pd  6.289   0.210   0.210    0.289    0.289
53 tc_training ~~ teacher_type  5.794  -0.081  -0.081   -0.085   -0.085
54 tc_training ~~      empltim  6.956   0.195   0.195    0.207    0.207
55 tc_workshop ~~        tc_pd  9.527  -2.553  -2.553   -4.187   -4.187
56 tc_workshop ~~ teacher_type  7.249  -0.176  -0.176   -0.222   -0.222
57 tc_workshop ~~      empltim 16.391   0.329   0.329    0.419    0.419
58       tc_pd ~~ teacher_type 17.021  -0.360  -0.360   -0.521   -0.521
59       tc_pd ~~      empltim 14.435   0.391   0.391    0.571    0.571
lavaanPlot(model = tech_model_2, coefs = TRUE, sig = .05, stand = TRUE, stars = "latent")
reading_scoretc_sextc_agetc_tedutc_initqualtc_trainingtc_workshoptc_pdteacher_typeempltimdemography0.41***0.2***educationtraining-0.270.18***0.36*0.04***type0.32***0.34***

j. Baseline Model

base_1 <- "
tc_age ~~ tc_age
tc_tcexp ~~ tc_tcexp
tc_tedu ~~ tc_tedu
tc_initqual ~~ tc_initqual
tc_training ~~ tc_training
tc_workshop ~~ tc_workshop
tc_pd ~~ tc_pd
reading_score ~~ reading_score
"
base_model <- sem(base_1, data = teacher_data, ordered = c("tc_sex", "tc_tedu", "tc_initqual", "tc_training", "tc_workshop", "tc_pd"))
# summary(base_model, fit.measures = TRUE)
fitmeasures(base_model)
                         npar                          fmin 
                       20.000                         0.197 
                        chisq                            df 
                      666.371                        23.000 
                       pvalue                  chisq.scaled 
                        0.000                       666.371 
                    df.scaled                 pvalue.scaled 
                       23.000                         0.000 
         chisq.scaling.factor                baseline.chisq 
                           NA                       666.371 
                  baseline.df               baseline.pvalue 
                       28.000                         0.000 
        baseline.chisq.scaled            baseline.df.scaled 
                      552.322                        28.000 
       baseline.pvalue.scaled baseline.chisq.scaling.factor 
                        0.000                         1.218 
                          cfi                           tli 
                        0.000                        -0.227 
                   cfi.scaled                    tli.scaled 
                        0.000                        -0.494 
                   cfi.robust                    tli.robust 
                           NA                            NA 
                         nnfi                           rfi 
                       -0.227                         1.000 
                          nfi                          pnfi 
                        0.000                         0.000 
                          ifi                           rni 
                        0.000                        -0.008 
                  nnfi.scaled                    rfi.scaled 
                       -0.494                         1.000 
                   nfi.scaled                   pnfi.scaled 
                       -0.206                        -0.170 
                   ifi.scaled                    rni.scaled 
                       -0.215                        -0.227 
                  nnfi.robust                    rni.robust 
                           NA                            NA 
                        rmsea                rmsea.ci.lower 
                        0.129                         0.120 
               rmsea.ci.upper                rmsea.ci.level 
                        0.137                         0.900 
                 rmsea.pvalue                rmsea.close.h0 
                        0.000                         0.050 
        rmsea.notclose.pvalue             rmsea.notclose.h0 
                        1.000                         0.080 
                 rmsea.scaled         rmsea.ci.lower.scaled 
                        0.129                         0.120 
        rmsea.ci.upper.scaled           rmsea.pvalue.scaled 
                        0.137                         0.000 
 rmsea.notclose.pvalue.scaled                  rmsea.robust 
                        1.000                            NA 
        rmsea.ci.lower.robust         rmsea.ci.upper.robust 
                           NA                            NA 
          rmsea.pvalue.robust  rmsea.notclose.pvalue.robust 
                           NA                            NA 
                          rmr                    rmr_nomean 
                       14.681                        16.414 
                         srmr                  srmr_bentler 
                        0.166                         0.148 
          srmr_bentler_nomean                          crmr 
                        0.166                         0.164 
                  crmr_nomean                    srmr_mplus 
                        0.188                            NA 
            srmr_mplus_nomean                         cn_05 
                           NA                        90.202 
                        cn_01                           gfi 
                      106.600                         0.997 
                         agfi                          pgfi 
                        0.994                         0.533 
                          mfi                          wrmr 
                        0.827                         3.937 

k. Regression Model

# Teacher Type Model
reg_mod1 <- "
reading_score ~ teacher_type
"
techr_type <- sem(reg_mod1, data = teacher_data, ordered = c("teacher_type"))
parameterEstimates(techr_type)
            lhs op           rhs      est     se       z pvalue ci.lower
1 reading_score  ~  teacher_type   -1.685  1.846  -0.912  0.362   -5.304
2 reading_score ~~ reading_score 2275.776 72.731  31.290  0.000 2133.224
3  teacher_type ~~  teacher_type    0.232  0.000      NA     NA    0.232
4 reading_score ~1                508.371  3.138 162.017  0.000  502.221
5  teacher_type ~1                  1.633  0.000      NA     NA    1.633
  ci.upper
1    1.934
2 2418.327
3    0.232
4  514.521
5    1.633
# Employment Type
reg_mod2 <- "
reading_score ~ empltim
"
empl_type <- sem(reg_mod2, data = teacher_data, ordered = "empltim")
parameterEstimates(empl_type)
            lhs op           rhs      est     se      z pvalue ci.lower
1 reading_score  ~       empltim   35.776  6.002  5.961      0   24.013
2 reading_score ~~ reading_score 2246.062 72.877 30.820      0 2103.226
3       empltim ~~       empltim    0.021  0.000     NA     NA    0.021
4 reading_score ~1                469.030  6.201 75.636      0  456.876
5       empltim ~1                  1.021  0.000     NA     NA    1.021
  ci.upper
1   47.539
2 2388.898
3    0.021
4  481.184
5    1.021

k. Regression Model Complete

# Teacher Type Model
reg_mod_complete <- "
reading_score ~ tc_sex + tc_age + empltim + tc_tcexp + tc_tedu + tc_initqual + tc_training + tc_workshop + tc_pd
"
complete_mod <- sem(reg_mod_complete, data = complete_data_5, ordered = c("tc_sex", "tc_tedu", "tc_initqual", "tc_training", "tc_workshop", "tc_pd", "empltim", "tc_tedu"))

summary(complete_mod, standardized = TRUE, rsquare = TRUE)
lavaan 0.6.14 ended normally after 114 iterations

  Estimator                                       DWLS
  Optimization method                           NLMINB
  Number of model parameters                        11

  Number of observations                          3526

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                                 0.000       0.000
  Degrees of freedom                                 0           0

Parameter Estimates:

  Standard errors                           Robust.sem
  Information                                 Expected
  Information saturated (h1) model        Unstructured

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  reading_score ~                                                       
    tc_sex            1.835    1.697    1.081    0.280    1.835    0.018
    tc_age           -0.331    0.115   -2.881    0.004   -0.331   -0.076
    empltim          31.467    5.643    5.576    0.000   31.467    0.092
    tc_tcexp          0.756    0.145    5.222    0.000    0.756    0.147
    tc_tedu          -4.938    1.670   -2.957    0.003   -4.938   -0.052
    tc_initqual      -1.195    0.798   -1.497    0.134   -1.195   -0.025
    tc_training      -0.613    1.900   -0.323    0.747   -0.613   -0.005
    tc_workshop      -6.628    3.872   -1.712    0.087   -6.628   -0.033
    tc_pd            10.863    7.178    1.513    0.130   10.863    0.030

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .reading_score   481.473   10.495   45.877    0.000  481.473    9.816

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .reading_score  2346.301   68.475   34.265    0.000 2346.301    0.975

R-Square:
                   Estimate
    reading_score     0.025
# Checking the Parameter Estimates
# parameterEstimates(complete_mod)

# Ordering covariacne matrix
# fitted(complete_mod)
# Conversting covariance matrix to correlation matrix
# cov_m <- fitted(complete_mod)$cov
# cor_cov <- cov2cor(complete_mod)
# cor_cov
# Obtaining residual correlation matrix
# residuals(complete_mod, type = "cor")
# Obtaining the residual covariance matrix
# residuals(complete_mod, type = "raw")

Comments

Popular posts from this blog

Education Matters: Understanding Nepal’s Education (Publication Date: June 19, 2023, Ratopati-English, Link at the End)

Navigating the AI Revolution: A Review of "Co-Intelligence: Living and Working with AI" by Ethan Mollick

charting Concept and Computation: Maps for the Deep Learning Frontier